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Figure 1: Our method generates consistent behaviors in incompressible fluid simulations across varying particle sizes. The particle resolu-
tions are set to dx = 0.01m, 0.0075m, and 0.005m from left to right, respectively. Particle velocities are color-coded.

Abstract
In simulating fluids using position-based dynamics, the accuracy and robustness depend on numerous numerical parameters,
including the time step size, iteration count, and particle size, among others. This complexity can lead to unpredictable control
of simulation behaviors. In this paper, we first reformulate the problem of enforcing fluid compressibility/incompressibility into
an nonlinear optimization problem, and then introduce a semi-implicit successive substitution method (SISSM) to solve the
nonlinear optimization problem by adjusting particle positions in parallel. In contrast to calculating an intermediate variable,
such as pressure, to enforce fluid incompressibility within the position-based dynamics (PBD) framework, the proposed semi-
implicit approach eliminates the necessity of such calculations. Instead, it directly employs successive substitution of particle
positions to correct density errors. This method exhibits reduced dependency to numerical parameters, such as particle size and
time step variations, and improves consistency and stability in simulating fluids that range from highly compressible to nearly
incompressible. We validates the effectiveness of applying a variety of different techniques in accelerating the convergence rate.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

In real-time simulation of particle-based fluids, position based
approaches are commonly used to enforce fluid incompressibil-
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ity [KBST22]. The basic idea is to formulate fluid incompressibility
as a set of non-linear positional constraints that solve constant den-
sity for particles. During the time integration procedure, an inter-
mediate variable resembling the role of pressure [SP09; HLL*12;
MM13; BK16] is calculated for each particle to iteratively cor-
rect the predicted positions until all constraints are satisfied un-
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Figure 2: Waterfall. This scenario consists of a maximum of 1.03
million particles, and the particle size is 0.005m.

der a user-defined threshold or the maximum iteration number is
reached.

The position based dynamics is popular due to its high efficiency
and robustness in handling large time steps. However, PBD also has
several limitations. One of the most notorious problems is that the
simulation behavior is dependent on both the iteration number and
time step size [MMC16]. For example, as the iteration number in-
creases, the positional constraints used to enforce constant density
can become arbitrary stiff. This artifact makes it difficult to con-
trol the behaviors of simulated objects because the final behaviors
are determined not only by their physical material parameters but
also a bunch of numerical parameters. This coupling of parameters
presents challenges not only for creating scenes in which soft bod-
ies interact with nearly rigid bodies [MMC16], but also for multi-
phase flows where compressible fluids interact with incompressible
fluids, as illustrated in Figure 11(top). While it is feasible to adjust
the iteration count to approximate fluid compressibility, the nonlin-
ear effects of iteration count on material stiffness can complicate
the intuitive control of fluid compressibility.

To overcome the limitations of conventional PBD methods, we
introduce a semi-implicit SPH method tailored for both compress-
ible and incompressible flows. In lieu of enforcing fluid incom-
pressibility via density constraints, we propose to reformulate fluid
compressibility and incompressibility as a variational representa-
tion of particle positions. This representation amalgamates fluid
momentum potential and bulk energy, drawing inspiration from the
principles elucidated in projective dynamics [BML*14]. The res-
olution of fluid compressibility or incompressibility is thus trans-
formed into a nonlinear optimization problem. To minimize this
objective, we propose a semi-implicit SPH (SISPH) method in-
spired by Lu et al. [LHG*23]. In this approach, a fixed-point itera-
tion strategy, based solely on the first-order derivative of the objec-
tive function, is used to iteratively and concurrently adjust particle
positions to enforce the desired fluid compressibility. Unlike tradi-
tional PBD method, the proposed semi-implicit approach presents
a unified solver to model fluids ranging from highly compressible
to nearly incompressible, exhibits reduced dependency to parame-
ter adjustments across different configurations of fluid simulations,
regardless of particle sizes and time steps. As depicted in results,
our method produces highly accurate simulation results for both
compressible and incompressible fluids.

2. Related Works

The meshless Lagrangian particle methods employed for address-
ing fluid incompressibility are categorizable into two principal ap-
proaches: the constant-density approach and the divergence-free
approach. The following section presents a discussion of these two
approaches mainly within the computer graphics community.

The constant-density approach focuses on maintaining a con-
sistent particle density throughout the simulation. This is achieved
by adjusting the particle spacing or using a kernel function that
adapts to ensure a constant number of neighboring particles within
a specified radius. Desbrun and Gascuel [DG96] first introduced
smoothed particle hydrodynamics into computer graphics for an-
imating highly deformable bodies. Subsequently, several non-
iterative equation of state (EOS) solvers were introduced, differ-
ing only slightly in their utilization of the EOS. As an illustration,
Müller et al. [MCG03] employ a modified version of the method
proposed by Desbrun and Gascuel [DG96], whereas Becker and
Teschner [BT07] opt for the utilization of Tait’s equation to more
effectively enforce fluid incompressibility. The major limitation
with the non-iterative EOS solvers is that the time step is strictly re-
stricted by the Courant-Friedrichs-Lewy(CFL) condition. In order
to mitigate the constraints imposed by timestep size, Solenthaler
and Pajarola [SP09] introduced the inaugural iterative EOS Solver,
referred to as Predictive-Corrective ISPH (PCISPH), designed to
enforce fluid incompressibility. Subsequently, He et al. [HLL*12]
introduced an integral form derived from the pressure Poisson
equation, aiming to enhance the convergence rate of the predictive-
corrective scheme. Bodin et al. [BLS11] advocated the applica-
tion of holonomic kinematic constraints on density as a means to
model incompressible fluids and achieve enhanced stability in con-
trast to the conventional SPH method. Macklin and Müller [MM13]
introduced a method to address particle incompressibility within
the context of the Position Based Dynamics (PBD) framework.
However, it’s important to note that this approach inherits sev-
eral numerical limitations from PBD, as discussed by Macklin et
al. [MMC16]. Weiler et al. [WKB16] proposed an alternative ap-
proach for addressing particle incompressibility using the projec-
tive dynamics framework. However, their method inherits several
key characteristics from Projective Dynamics, such as the inability
of the global solver to handle nonlinear constraints, which results in
fluids being slightly compressible. Finally, a constant density field
can be enforced by solving a pressure Poisson equation. Ihmsen
et al. [ICS*14; BGI*18] proposed to combine a symmetric SPH
pressure force and an SPH discretization of the continuity equation
to improve the convergence rate. Takahashi et al. [TDNL18] pro-
posed a hybrid SPH solver with a new interface handling method
to address issues in traditional projection-based solvers.

The divergence-free approach directly enforces the incom-
pressibility condition by focusing on the divergence of the ve-
locity field. This is accomplished by solving a pressure Pois-
son equation to ensure a zero-divergence condition. In contrast to
constant-density approaches, implementing a divergence-free ap-
proach is typically more complex and necessitates meticulous treat-
ment of boundary conditions and numerical stability. Because di-
rectly enforcing the divergence-free condition on particles is chal-
lenging, the early work by Raveendran [RWT11] introduced a hy-
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brid method that combines a local SPH density solver with an
Eulerian velocity divergence solver to enhance the performance
of fluid simulations. Returning to the fully Lagrangian frame-
work, in order to tackle the zero-energy mode problem, He et
al. [HLW*12] introduced staggered particles alongside the origi-
nal ones, and devised a new approximate projection method capa-
ble of enforcing divergence-free behavior for particles both within
and near boundaries. Yang et al. [YHW*16] further improved
the accuracy of the projection method by incorporating a semi-
analytical scheme near the free-surface boundary. Divergence-free
approaches can be computationally efficient as they directly en-
force incompressibility without the need for redistributing parti-
cles. However, they may have stability challenges in some scenar-
ios. Bender and Koschier [BK16] advocated to enforce incompress-
ibility both on position level and velocity level, and proposed to
combine two pressure solvers to enforce both low volume com-
pression and a divergence-free velocity field, therefore achieving
faster and more stable simulation of incompressible fluids. Kang
and Sagong [KS14] also introduced a method for simulating an in-
compressible fluid that simultaneously adheres to the divergence-
free and constant-density conditions. Alternatively, one may opt
to concurrently address the divergence-free and constant-density
conditions through a unified solution. Losasso et al. [LTKF08]
employ a source term that incorporates both the divergence-free
and constant-density conditions, facilitating the enforcement of in-
compressibility and the control of particle number density within
a unified Poisson solving framework. Nevertheless, Cornelis et
al. [CBG*19] contend that integrating both of these conditions into
the source term introduces numerical artifacts. As a remedy, they
suggest solving two PPEs despite incurring a twofold increase in
computational costs.

Enforcing fluid incompressibility can be reinterpreted as a vari-
ational problem. Batty et al. [BBB07] reformulate the pressure
projection step as a minimization of kinetic energy, thereby uni-
fying the enforcement of fluid incompressibility and the resolu-
tion of solid-fluid coupling within a single framework. Larionov
et al.[LBB17] further integrate viscosity and pressure to formu-
late the Stokes problem as an implicit variational problem, allow-
ing grid-based fluid simulators to effectively reproduce complex
viscous liquid motions such as coiling and buckling. In simula-
tion of Lagrangian solid-fluid coupling, Xie et al. [XLYJ23] pro-
pose a variational formulation to approximate fluid incompress-
ibility. Our method is inspired by this variational interpretation of
fluid incompressibility; however, rather than formulating the varia-
tional approach in terms of particle velocities, we aim to solve the
variational problem using a purely position-based dynamics (PBD)
framework to enhance stability.

3. Fundamentals

For completeness, this section presents a brief description of all
mathematical theories required to derive the semi-implicit SPH
method.

3.1. Fixed-point iteration

Fixed-point iteration is a commonly employed technique in numer-
ical analysis. Suppose f is a function defined on a real number x,

𝑡 = 0.36𝑠 𝑡 = 0.6𝑠

𝑡 = 1.1𝑠 𝑡 = 2.5𝑠

Figure 3: Seaside. This example demonstrates a stable flood simu-
lation of seawater over the seaside, where the seawater is modeled
with 1.6 million particles and the seaside is represented by 2.5k
boundary triangles.

the fixed-point iteration is conventionally formulated as follows:

xk+1 = f (xk), k = 0,1,2, ... (1)

where k is the iteration number. As the iteration number k increases,
the sequence of real numbers x0, x1, x2, ... is anticipated to con-
verge towards a fixed point denoted as xfix, where xfix = f (xfix).
Nevertheless, it is important to note that not all fixed-point itera-
tion sequences converge to xfix. The Banach fixed-point theorem
provides a sufficient condition for the convergence of fixed-point
iteration sequences [Lat14]. To ensure both existence and unique-
ness, this theorem necessitates that the sequence of real numbers
resides within an open neighborhood of the fixed point xfix and that
∥ f ′(xk)∥< 1.

One of the most appealing aspects of employing fixed-point it-
eration is its inherent simplicity. It’s noteworthy that this method
entails solely the repeated application of the function to an ini-
tial estimate until the convergence condition is met. Furthermore,
it obviates the need for employing mathematical tools like matrix
inversion or gradient calculations. Consequently, fixed-point iter-
ation emerges as an ideal candidate for GPU-based paralleliza-
tion. Nonetheless, the Banach fixed-point theorem suggests that
this method may fail to converge to a solution, particularly when
the initial guess is distant from the fixed point. When dealing with
a non-linear optimization problem, it necessitates a thorough anal-
ysis of both the problem and the initial estimate before opting for
fixed-point iteration.

3.2. Semi-implicit successive substitution method

Lu et al. [LHG*23] initially introduced the semi-implicit succes-
sive substitution method for solving nonlinear problems with a gen-
eral formula expressed as follows:

x = f (x,x′)(x′− x)+ c, (2)

where both x and x′ are regarded as real numbers here for the sake
of simplicity, x′ can be viewed as a point in the neighborhood of x,
and c represents a constant. It is important to note that when f (x,x′)
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represents an arbitrarily chosen nonlinear function, it is possible
that the sufficient condition mandated by the Banach fixed-point
theorem may not be met. Hence, if we directly apply fixed-point
iteration to solve Equation 2, the sequence of xk is not assured
to converge towards a fixed point. To tackle this challenge, Lu et
al. [LHG*23] suggest employing a semi-implicit strategy for lin-
earizing Equation 2 at (xk,x

′
k), as follows:

xk+1 = f+(xk,x
′
k)(x

′
k− xk+1)+ f−(xk,x

′
k)(x

′
k− xk)+ c, (3)

where f (xk,x
′
k) = f+(xk,x

′
k) + f−(xk,x

′
k). To elaborate further,

f+(xk,x
′
k) denotes a fraction with a consistently positive value,

whereas f−(xk,x
′
k) signifies a fraction with a consistently nega-

tive value. Following the semi-implicit linear approximation, we
proceed with a Jacobi iterative step to refine the initial estimate as
follows:

xk+1 =
c+ f+(xk,x

′
k)x

′
k + f−(xk,x

′
k)(x

′
k− xk)

1+ f+(xk,x′k)
. (4)

This procedure should be iterated until an adequately precise
threshold is attained. It is worth noting that the entire procedure
within SISSM bears a resemblance to fixed-point iteration, as nei-
ther method necessitates the use of intricate mathematical tools.
However, SISSM’s convergence is assured when we meticulously
split f (x,x′) into its positive and negative components.

4. A Semi-implicit SPH Method

Our approach is formulated by initially rephrasing the concept of
fluid incompressibility in a variational manner. To ensure fluid
incompressibility, the position-based method typically seeks to
resolve a constraint for each individual particle, as described
in [MM13]

Ci = λi−1 = 0, λi =
ρi

ρ0
, (5)

where ρ0 is the rest density and ρi is calculated with a particle ap-
proximation as [KBST19]

ρi = ∑
j

m jW (xi−x j,H). (6)

In the simulation of incompressible fluids with a fixed particle size,
it is often convenient to treat both the particle mass m j and the
smoothing length H as constants. Nevertheless, because the choice
of the kernel function W (·) typically involves a nonlinear depen-
dence on ri j =

∥∥xi−x j
∥∥ to prevent significant volume loss, en-

forcing the constraint in Equation 5 is, in essence, tantamount to
solving a nonlinear optimization problem, such as seeking a local
minimum of C2

i .

From an optimization perspective, the iterative density solver in-
troduced within the position-based dynamics framework [MM13]
can be seen as a variant of the nonlinear Jacobi algorithm. Nev-
ertheless, as highlighted in Macklin’s work [MMC16], a signif-
icant drawback of position-based dynamics is that the stiffness
of constraints varies with both the iteration count and time step
size, posing challenges in achieving predictable physical behav-
iors. Inspired by the principles of projective dynamics [KUJH21;
LHG*23; BML*14], we expand the constant-density constraint and

Algorithm 1: A Semi-Implicit SPH (SISPH) Method

while t < tstop do
for all particles i do

v∗i ← vn
i +h · fi;

x∗i ← xn
i +h ·v∗i ;

end
for all particles i do

find neighboring particles;
end
for all particles i do

x0
i = x∗i ;

end
set k = 0 ;
while k < N ∥ ε

k < η do
for all particles i do

compute ρi using Eq. 6 based on xk;
clamp ρi using ρi = max(ρi,ρ0);
compute xk+1

i using Eq. 14;
compute α

k
i using Eq. 20;

xk+1
i ← xk

i +α
k
i

(
xk+1

i −xk
i

)
;

k = k+1;
end

end
for all particles i do

set xn+1
i = xN

i ;
update velocity vn+1

i = (xn+1
i −xn

i )/h;
end

end

formulate the objective function in the following variational man-
ner:

ψ =
1

2h2 m
∥∥x−x∗

∥∥2
+µ∑

i
B(λi), (7)

where the first term defines the momentum potential while the sec-
ond term defines the bulk energy potential. Within above defini-
tion, x denotes the column vector containing all particle positions,
x∗ represents the intermediate position as shown in Algorithm 1, h
signifies the time step, ∥·∥ stands for the l2-norm, and B(λi) rep-
resents the bulk energy associated with particle i whose exact for-
mulation will be given in Section 4.3. The optimization problem
now involves balancing the momentum potential and the bulk en-
ergy potential, with the weighting determined by the constant µ. It
is worth noting that when the momentum potential is omitted, the
energy optimization problem is analogous to the constant-density
constraint, provided that the bulk energy function B(λi) remains
convex and continuously differentiable.

4.1. Semi-implicit successive substitution

In accordance with optimization theory, when x serves as a local
minimizer of a convex and continuously differentiable objective
function ψ, we can establish the following relationship for each
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particle by differentiating ψ with respect to xi

xi = x∗i +µ
h2

ρ0
Ḃ(λi)∑

j

∂Wi j

∂ri j

x j−xi

ri j
, (8)

where Ḃ represents the first-order derivative of B with respect to
λi, Wi j is short for W (xi− x j,H). Please note that when we inter-
pret x j − xi in Equation 8 as x′− x in Equation 2, the remaining
part of the second term excluding xi− x j as f (x,x′), and x∗i as c,
Equation 8 now conforms to the format of Equation 2. Neverthe-
less, when taking the derivative of ψ with respect to xi to obtain
Equation 8, it is important to notice we have temporally neglected
contributions from all neighboring particle j to make the following
discussion concise. Later, we will provide additional details on how
to ensure the conservation of momentum during position updates.

Having established that Equation 8 now conforms to the format
of Equation 2, our next task is to investigate how to separate the sec-
ond term of the RHS into two parts. Given that µ, h, ρ0, and ri j are
consistently positive, the sign of the coefficient preceding xi−x j is
solely influenced by Ḃ(λi) and ∂W

∂r . In the simulation of position-
based incompressible fluids, as two particles approach each other,
we anticipate the emergence of stronger repulsion forces to pre-
vent particle clustering. Specifically, the ideal kernel function W
employed for ensuring incompressibility should possess a non-
vanishing gradient near its center, and its first derivative should
exhibit a monotonic increase while vanishing at the boundary of
the support domain, as suggested in prior work [HLW*12; GK16].
Consequently, we employ Desbrun’s spiky kernel [MCG03]

W =
15

πH6

{
(H− r)3 0≤ r < H

0 H < r
. (9)

It can be verified that its first-order derivative is negative for all r.
Now, our task is to examine the sign of each term in Ḃ(λi) exclu-
sively. Given that ρi always has a value greater than 0, it follows
that λi > 0 should hold indefinitely. Hence, a general approach to
simplify the decomposition of Ḃ(λi) is to express it as a polynomial
function of λi, such as

Ḃ(λi) =
∞
∑

n=−∞
bnλ

n
i , (10)

where bn represents the coefficient of λ
n
i . Subsequently, we can

readily perform the split as Ḃ(λi) = Ḃ−(λi) + Ḃ+(λi), where the
positive component Ḃ+(λi) and the negative component Ḃ−(λi) are
represented as

Ḃ+(λi) = ∑
n

bnλ
n
i , bn > 0

Ḃ−(λi) = ∑
n

bnλ
n
i , bn < 0

(11)

The question at hand is whether it is possible to express an arbi-
trary function of Ḃ(λi) as a polynomial. Indeed, the answer is affir-
mative, as we can consistently reframe an infinitely differentiable
function as an infinite series of terms involving its derivatives eval-
uated at λi, following the principles of the Taylor series. Following
the partitioning of Ḃ(λi), a semi-implicit step for updating positions

Figure 4: A comparison illustrating momentum conservation using
(a) the conservative scheme described in Equation 14 and the non-
conservative scheme described in Equation 12. Particle velocities
are color-coded. It is noteworthy that the fluid exhibits oscillations
when momentum is not conserved.

(𝒂)

(𝒃) (𝒄)

Figure 5: Three representative bulk energy functions are employed
to assess convergence: (a) the original bulk energy functions, (b)
their first-order derivatives, and (c) the convergence rates for all
three bulk energy functions.

is expressed as

xk+1
i =

x∗i +∑ j Ak−
i j (xk

j−xk
i )+∑ j Ak+

i j (xk
j)

1+∑ j Ak+
i j

, (12)

where Ak+
i j and Ak−

i j are evaluated at each iteration explicitly as

Ak+
i j = µ

h2

ρ0
Ḃ−(λk

i )
∂W (rk

i j,H)

rk
i j∂rk

i j
,

Ak−
i j = µ

h2

ρ0
Ḃ+(λk

i )
∂W (rk

i j,H)

rk
i j∂rk

i j
.

(13)

It’s important to note that Ak+
i j is positive, while Ak−

i j is negative
for all values of ri j and λi. Furthermore, Equation 12 suggests that
each particle’s position can be independently updated. This charac-
teristic renders the algorithm highly parallelizable and well-suited
for modern GPU architectures.
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Figure 6: (a) The convergence of the semi-implicit successive sub-
stitution method is demonstrated to be effective with both Ander-
son acceleration and Chebyshev acceleration, achieving compara-
ble convergence rates in terms of iteration numbers. (b) However,
Chebyshev acceleration, being more suitable for GPU implemen-
tation, achieves superior overall performance.

4.2. Momentum conservation

In standard SPH theory, when a particle j is located within the sup-
port domain of particle i, both particles i and j should be mutu-
ally stored in each other’s neighbor list. However, this approach
can significantly increase the size of neighbor lists for particles in
highly compressible regions. Therefore, a more efficient solution is
to store only a constant number of neighbors (e.g., around 30 to 40)
that are closest to the central particles and scale the kernel func-
tion in Equation 9 with a constant at the beginning of simulation to
ensure that the rest density remains at ρ0. Consequently, when par-
ticle j is included in the neighbor list of particle i, there is no guar-
antee that particle i will reciprocally be present in the neighbor list
of particle j, resulting in a breakdown of momentum conservation.
To tackle this issue, we employ Newton’s Third Law to enforce
mutual interactions. Specifically, when a positional displacement
of µ h2

ρ0
Ḃ(λi)

∂Wi j
∂ri j

xi−x j
ri j

is applied to particle i by its neighboring
particle j, particle i will, in turn, impose a reaction positional dis-
placement of −µ h2

ρ0
Ḃ(λi)

∂Wi j
∂ri j

xi−x j
ri j

onto particle j. Consequently,
the semi-implicit step in Equation 12 can be reformulated to con-
serve momentum during position update as follows:

xk+1
i =

x∗i +∑
j

(
Ak−

i j +Ak−
ji

)
(xk

j−xk
i )+∑

j

(
Ak+

i j +Ak+
ji

)
xk

j

1+∑
j

(
Ak+

i j +Ak+
ji

) (14)

Figure 4 illustrates a comparison that highlights the enhance-
ment in fluid momentum conservation achieved through the use of
Equation 14. When employing Equation 12 for updating particle
positions, the fluid undergoes continuous oscillations, as depicted
in Figure 4(b). Upon substituting the position updating scheme with
Equation 14, the fluid gradually stabilizes, as evident in Figure 4(a).

4.3. Guarantee of convergence

It is essential to emphasize that the selection of the bulk energy
function is not unique. In this section, we will examine three rep-
resentative cases to illustrate the impact of the energy function on

the convergence rate (see Figure 5(a) and 5(b) for the original func-
tions and their first derivatives). The simplest choice is to employ
a quadratic function, i.e., B0(λi) =

1
2 (λi− 1)2. We can derive the

split of its first-order derivative as follows:

Ḃ+
0 (λi) = λi, Ḃ−

0 (λi) =−1. (15)

The second choice involves an energy function, B1(λi) =
λ

3
i −1
3 −

λi + 1, inspired by [XHC*18]. The expression for the split of its
first-order derivative is as follows:

Ḃ+
1 (λi) = λ

2
i , Ḃ−

1 (λi) =−1. (16)

Similarly, the third choice uses a higher-order energy function of

B2(λi) =
λ

4
i −1
4 −λi +1. The expression for the split of its first-

order derivative is as follows:

Ḃ+
2 (λi) = λ

3
i , Ḃ−

2 (λi) =−1. (17)

It should be noted that we have made slight adjustments to the co-
efficients of the energy functions to ensure that the values of Ḃ+

and Ḃ− are equal for all three cases when λ = 1. Additionally, to
prevent artificial particle clumping, it is common practice to clamp
negative pressures to zero [ICS*14; MMCK14; BK16]. According
to the definition of widely used equations of state (EOS), such as
Tait’s equation, clamping negative pressures to zero is equivalent to
clamping particle densities below ρ0 to ρ0. Since our method does
not require the calculation of an EOS-related variable, such as pres-
sure, we propose using ρi = max(ρi,ρ0), and set ρ0 = 1000kg/m3

for all scenarios to ensure simplicity. Consequently, λ is guaranteed
to be no smaller than 1.

For the purpose of comparing convergence rate, we utilize the
relative error defined as

ε
k =

ψ

(
xk
)
−ψ

(
xN

)
ψ
(
x0
)
−ψ(xN)

, (18)

where x0 is the initial particle position, xk is the k-th iterate, xN

is the final iterate. Here N should be chosen large enough so that
the value of xN is close to the exact solution of the energy min-
imization problem. In our present experimental studies, we have
determined that a maximum iteration number of N = 50 is suf-
ficient. The decrease of relative error for three cases is shown in
Figure 5(c), where the step length search method proposed by Lu
et al. [LHG*23] is used for all three cases to avoid the overshooting
problem. To ensure completeness, we provide additional details on
how to calculate the step length. Given xk

i and xk+1
i in Equation 14,

the goal is to identify a new position between xk
i and xk+1

i that is
able to minimize the total energy of ψi

xi← xk
i +α

k
i

(
xk+1

i −xk
i

)
(19)

where αi ∈ [0,1]. By expressing ψi into a first-order Taylor poly-

nomial around xk
i , specifically ψi = ψ

k
i +α

k
i

∂ψ
k
i

∂xk
i

(
xk+1

i −xk
i

)
, we

define a relaxed upper limit estimation for α
k
i as follows

α
k
i = min

− ψ
k
i

∂ψk
i

∂xk
i

(
xk+1

i −xk
i

) ,1
 , (20)
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(c) dx = 0.02𝑚 (d) dx = 0.04𝑚

(b) dx = 0.015𝑚(a) dx = 0.01𝑚

Figure 7: Simulation of a dam-break scenario with a sampling dis-
tance ranging from 0.01m, 0.015m, 0.02m to 0.04m. The time steps
are all set to 0.001s, the smoothing lengths are defined as 1.2 times
the particle size dx, and the gravity is 9.8m/s2.

where two relationships including ψi ≥ 0 and ∂ψ
k
i

∂xk
i

(
xk+1

i −xk
i

)
≤ 0

are applied. It it noteworthy the value of ∂ψ
k
i

∂xk
i

can be easily derived
from Equation 14, the additional cost associated with calculating
the step length is negligible.

During our experimental investigations, we have observed that
as the order of the energy function steadily increases, the conver-
gence rate ultimately decreases. This is because a higher-order en-
ergy function typically requires a smaller time step length. The only
exception here is that the convergence speed of using B1 seems to
be slightly faster than that of using B0. This indicates we can design
a polynomial function with an order between 2 and 4 to achieve the
fastest convergence speed. However, an advantage of utilizing B0
lies in its obviation of the need for a step length search method.
Therefore, we will consistently employ B0 as the bulk energy func-
tion in the subsequent context if not specified.

Acceleration. As a specialized form of fixed-point iteration
methods, the semi-implicit successive substitution method shares
many features with the Jacobi method. For instance, the conver-
gence rate is typically linear, which is often too slow for solving
nonlinear optimization problems. Anderson acceleration is a com-
monly used technique to speed up the convergence of the fixed-
point sequence [And65; PDZ*18]. Therefore, we first attempt to
accelerate the convergence rate by applying Anderson acceleration
and updating the sequence accordingly

xk+1 =
n

∑
i=0

ak
i fk−n+i, (21)

where ak = argmin
a

∥∥∥∑
n
i=0 ai(f−x)k−n+i

∥∥∥
2

represents the solution

to the least square problem with ∑
n
i=0 ai = 1. By setting n = 1,

SISSM has been found to converge faster. However, solving ak re-

(a1)  ℎ = 1𝑚𝑠. (b1) ℎ = 5𝑚𝑠. (c1) ℎ = 10𝑚𝑠.

(a2)  ℎ = 1𝑚𝑠. (b2) ℎ = 5𝑚𝑠. (c2) ℎ = 10𝑚𝑠.

𝑡
=
0
.1

s
𝑡
=
0
.3

s

Figure 8: Simulation of 70,000 particles with time steps set to 1ms,
5ms, and 10ms from left to right. The particle sizes are consis-
tently set at 0.01m. The smoothing lengths are uniform at 1.2dx,
equivalent to 0.012m. The strengths of the artificial viscosity solver
(XSPH) [SB12] are identically set at 0.3.
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𝑡 = 0.1𝑠 𝑡 = 0.675𝑠 𝑡 = 1.5𝑠

0𝑚/𝑠

5𝑚/𝑠

Figure 9: A side by side comparison of our method with PBF in
simulating incompressible fluids, showing consist velocity fields
throughout the entire time history.

quires dot product and reduction operations at each iteration, mak-
ing Anderson acceleration unsuitable for GPU implementation. An
alternative solution is to apply the Chebyshev acceleration [Wan15]
and update the sequence as

xk+1 = ωk+1(f
k−xk−1)+xk−1, (22)

where ωk+1 represents the relaxation parameter defined as

ω1 = 1, ω2 =
2

2−ρ2 , and ωk+1 =
4

4−ρ2ωk
f or k ≥ 2. (23)

Figure 6 shows as the spectral radius ρ is set to 0.9, Chebyshev
acceleration achieves a convergence rate comparable to Anderson
acceleration. Furthermore, since Chebyshev acceleration does not
require dot product or reduction operations, it introduces minimal
computational overhead to each SISSM iteration. Consequently,
Chebyshev acceleration demonstrates higher performance in terms
of total computational cost, as shown in Figure 6(b).

5. Results and Discussion

We configure various scenarios to showcase features of our method.
All experiments were performed on a laptop computer equipped
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with an Intel i9-12900H processor running at 2.90 GHz, an
NVIDIA GeForce RTX 3080Ti laptop GPU, and 64GB of RAM.
Time-consuming tasks, such as neighbor-list searching and numer-
ical optimization, are parallelized on the GPU using CUDA. To ad-
dress complex solid-fluid interactions, we have integrated the semi-
analytical boundary handling technique [CLH*20], enabling the
coupling of fluid particles with boundary triangle meshes. We use
the XSPH method [SB12] to model artificial viscosity. The pseu-
docode of our method is available in Algorithm 1, and the time-cost
statistics for the scenarios can be found in Table 5.4.

5.1. Performance comparison

To demonstrate the adaptability of our method to varying particle
sizes, we simulate a dam-break scenario using different particle
sizes, as depicted in Figure 7. As the particle sampling distance
is increased from 0.01m to 0.04m, our method maintains stable and
consistent simulation results for all configurations. To better illus-
trate the versatility of our method across diverse particle sizes, Fig-
ure 1 presents a comparison encompassing three configurations of
particle sizes. In this setup, five fluid cubes and cylindrical obsta-
cles are introduced to enhance fluid details. A side-by-side compar-
ison demonstrates that our method consistently models fluid behav-
ior across various spacings. In addition to particle size, the timestep
size is another crucial numerical parameter that may influence sim-
ulation outcomes [ICS*14; BK16; SP09]. Figure 8 shows a com-
parison of our method using different timestep sizes. Our method
consistently produces simulation results that remain relatively sta-
ble across varying timestep sizes.

5.2. Compressible vs. Incompressible Flows

Figure 10 illustrates an example of fluid simulation that ranges from
highly compressible to nearly incompressible. For simplicity, the
quadratic function B0(λi)=

1
2 (λi−1)2 is selected to model the bulk

energy. Notably, when the constant coefficient µ is set to a small
value of 10−4, the momentum potential significantly contributes
to the total energy. Consequently, high fluid compressibility is ev-
ident during the simulation. However, as the value of µ increases,
the contribution from the momentum potential diminishes. When

PBF𝜇 = 10−4 𝜇 = 10−3 𝜇 = 10−2 𝜇 = 10−1 𝜇 = 1

Our method

𝜌0 1.5𝜌0

Figure 10: Simulation of fluids ranging from highly compressible to
nearly incompressible. Within our method, the bulk energy function
is set to B0(λi) =

1
2 (λi−1)2, the value of µ is changing from 10−4

to 1. Density field is color coded.

𝑡 = 0.2𝑠 𝑡 = 0.4𝑠𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝜇 = 1

𝜇 = 10−4

𝜇 = 1

𝜌0 1.5𝜌0
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Figure 11: A side by side comparison of our method in simulating
compressible and incompressible fluids. Top: fluid simulation with
half initialized as incompressible (µ = 1) while the other half ini-
tialized as highly compressible (µ = 10−4); Bottom: the whole fluid
is initialized as incompressible. Density is color coded for both sim-
ulations.

µ reaches a sufficiently large value, this contribution can be effec-
tively neglected. Specifically, when µ is increased to 1, the fluid
behaviors simulated with our method converge to those of incom-
pressible fluid as modeled by PBF [MM13]. Further increasing µ
yields no additional differences in the simulation results.

To demonstrate the consistency of our method in generating in-
compressible fluids, Figure 9 shows a side-by-side comparison of
our method with µ = 1 and PBF [MM13]. The velocity fields for
both methods are nearly consistent throughout the entire time his-
tory. Figure 11 provides another example that poses challenges for
standard PBD methods. In this case, we couple a compressible fluid
with an incompressible fluid by setting µ to 10−4 and 1, respec-
tively. During the simulation, it is evident that the high compress-
ibility of the compressible fluid and the incompressibility of the
incompressible fluid are simultaneously maintained and well pre-
served.

5.3. Comparison among different SPH methods

Figure 12 demonstrates a comparison of our method with three
widely used approaches—PBF [MM13], IISPH [ICS*14], and DF-
SPH [BK16]—under varying time step sizes. For fairness, our im-
plementation of DFSPH includes only the constant density solver,
excluding the divergence-free solver. Furthermore, to eliminate the
influence of differing residual measurements, the number of itera-
tions for all methods is fixed at 10 throughout the simulation. The
comparison reveals that all methods produce consistent simulation
results when the time step is set to a small value of h = 1ms. How-
ever, as the time step size increases, DFSPH generates more dy-
namic simulation results, whereas the results from other methods
remain relatively consistent. Regarding stability, PBF, DFSPH, and
our method can handle time steps as large as 32 ms, while IISPH
becomes unstable at larger time steps. In terms of computational
cost per iteration, DFSPH and our method demonstrate comparable
performance, averaging approximately 0.4 ms per iteration. PBF
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ℎ = 1𝑚𝑠 ℎ = 4𝑚𝑠 ℎ = 8𝑚𝑠

0𝑚/𝑠

1𝑚/𝑠

Figure 12: This example shows the snap shot of a simulation at
time t = 0.832s to demonstrate the performance comparison among
PBF [MM13], IISPH [ICS*14], DFSPH [BK16] and our method
(SISPH) with different time step sizes. The particle size is set to
dx = 0.005m, the smoothing length is 2dx, and the constant µ is 1.

incurs a slightly higher computational cost of 0.6 ms per iteration,
whereas IISPH is the most computationally expensive solver, re-
quiring about 2.4 ms per iteration. For more details and comparison
regarding to the particle size and the smoothing length, we direct
readers to the supplementary video and the accompanying source
code available in PeriDyno. †.

5.4. More examples

Our method provides more consistent animations to various
timestep and particle sizes, therefore can readily integrate with
other techniques to simulate increasingly complex scenarios. As
an illustration, Figure 3 presents a flood simulation seawater over
the seaside, which consists of 1.6 million particles and 2.5k trian-
gles. Figure 13 simulated a fountain consisting of a maximum of
2.3 million fluid particles and 1.5 million boundary triangles. We
utilize Continuous Collision Detection (CCD) [WTTM15] for both
examples to detect collision between fluid particles and boundary
triangles and then correct the particles’ positions to prevent fluid
particles from penetrating the solid. In a different scenario, as illus-
trated in Figure 2, we simulate a waterfall by employing a particle
emitter. The sampling distance in this simulation can be adjusted
to accommodate the specific requirements of the application, and
there is no need for concern regarding numerical issues that may
arise during the adjustment of particle size.

† https://github.com/peridyno/peridyno

Figure 13: Fountain. This scenario consists of a maximum of 2.5
million fluid particles and 1.5 million boundary triangle meshes,
the particle sizes are set to 0.008m.

6. Conclusion and Limitations

By formulating the problem of solving fluid compressibility and in-
compressibility as a nonlinear optimization problem, we propose a
semi-implicit successive substitution method that is GPU-friendly
for solving fluid dynamics for SPH. Compared to the traditional
PBD method, our approach alleviates the artificial dependence of
numerical parameters, such as the iteration number, on material
stiffness and enables the simulation of physically accurate fluids
that range from highly compressible to nearly incompressible. Our
method is easy to implement and compatible with GPU accelera-
tion. It can reliably generate stable and consistent simulation out-
comes for fluid systems characterized by numerical parameters in-
cluding variations in particle size, time step, etc. The proposed
method is expected to make particle-based fluid simulation more
widely applicable for real-time applications.

The primary limitation of this study is that we tested only a sub-
set of all bulk energy functions, leaving the optimal convergence
rate undetermined. Although convergence rates can be improved

Figure Np dx tneighbor tsolver ttotal

Figure 1 Teaser(Left). 283k 0.01m 7.59ms 2.85ms 15.3ms
Figure 1 Teaser(Middle). 657k 0.075m 18.2ms 6.8ms 36.6ms
Figure 1 Teaser(Right). 2.18M 0.005m 61.3ms 21.9 125ms
Figure 2. Waterfall 0∼1.03M 0.005m − − 0∼105ms
Figure 3. Seaside 1.60M 0.005m 27.5ms 19.8ms 59.7ms
Figure 13. Fountain 0∼2.5M 0.008m − − 0∼262ms

Table 1: In these scenarios, the iteration number of SISSM is set
to 5, the time step is set to 1ms, and the smoothing length is set to
1.2 times of the particle size, i.e., 1.2dx; Np represents the num-
ber of particles; dx represents the particle size (particle spacing);
tneighbor is the computational cost to find neighbors; tsolver is the
computational cost for each SISSM iteration; ttotal represents the
average computational cost per time step.
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using acceleration techniques from traditional solvers, overall per-
formance is influenced by various factors, such as the spectral ra-
dius and the number of sequences from previous iterations used
to compute the new iteration. Moreover, our current implementa-
tion of the semi-implicit solver does not include special treatments
for particles near the boundary. Therefore, an additional boundary
handling step is necessary to prevent particle penetration into the
solid. In future work, we aim to extend our method to address both
one-way and two-way fluid-solid coupling. Finally, fluid compress-
ibility is not modeled after real materials. It would be intriguing to
extend our method to simulate real compressible materials, such as
snow simulation [GHB*20].
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