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Fig. 1. The dual-particle approach is able to reduce the tensile instability of SPH fluids for well simulating free-surface flows with rich thin detailed features.
Left: A high viscous fluid stretches under gravity; Middle: A cup falls onto the ground with water spurting out of the cup; Right: Fluid particles spilled onto the
gargoyle, producing a lot of thin features under a tensile stress state.

Tensile instability is one of the major obstacles to particle methods in fluid
simulation, which would cause particles to clump in pairs under tension and
prevent fluid simulation to generate small-scale thin features. To address
this issue, previous particle methods either use a background pressure or
a finite difference scheme to alleviate the particle clustering artifacts, yet
still fail to produce small-scale thin features in free-surface flows. In this
paper, we propose a dual-particle approach for simulating incompressible
fluids. Our approach involves incorporating supplementary virtual particles
designed to capture and store particle pressures. These pressure samples
undergo systematic redistribution at each time step, grounded in the initial
positions of the fluid particles. By doing so, we effectively reduce tensile
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instability in standard SPH by narrowing down the unstable regions for
particles experiencing tensile stress. As a result, we can accurately simu-
late free-surface flows with rich small-scale thin features, such as droplets,
streamlines, and sheets, as demonstrated by experimental results.
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ible fluids, tensile instability, smoothed particle hydrodynamics
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1 INTRODUCTION
Since smoothed particle hydrodynamics (SPH) was first proposed
by Gingold, Lucy and Monaghan in 1970s [Gingold and Monaghan
1977; Lucy 1977], the tensile instability issue has become one of
the major obstacles to prevent the use of SPH in practical appli-
cations. Without addressing the tensile instability, particles may
tend to clump in pairs under attractive interparticle forces. As a re-
sult, traditional incompressible SPH solvers typically fail to produce
small-scale thin features (e.g., water streamlets and sheets), espe-
cially for free-surface flows where particles near the free-surface
boundary mainly endure attractive interparticle forces. To reduce
tensile instability in fluid simulation, two strategies are commonly
used in computer graphics. One is to use a background pressure to
avoid the occurrence of attractive interparticle pressure forces, and
the other is to use a scheme similar to the finite difference method
to discretize the pressure gradient.
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Within the first strategy, a positive background pressure is typi-
cally introduced to provide repulsive forces in pairs to regularize
the particle distribution. However, several drawbacks prevent its
use. Firstly, excessive numerical dissipation can arise from the back-
ground pressure, and redundant repulsive pressure forces may de-
stroy the small-scale thin features of SPH fluids [Chalk et al. 2020; He
et al. 2014; Vacondio et al. 2021]. Secondly, it cannot be applied in the
context of projection-based methods to simulate free-surface flows
where a zero-pressure boundary condition is typically imposed at
the liquid interface [Colagrossi et al. 2009].
With regard to the second strategy, a variety of different meth-

ods have been developed. For example, a Taylor-series consistent
pressure gradient model was used in the MPS method [Khayyer and
Gotoh 2011] to stabilize the simulation for regions in presence of
attractive interparticle forces. Similar ideas have also been intro-
duced in the context of the SPH method for computer graphics [He
et al. 2012b, 2020]. Nevertheless, the stability of the simulation per-
formed by pressure gradient models is generally not guaranteed if
no additional dynamic stabilization (DS) [Macklin and Müller 2013;
Tsuruta et al. 2013] schemes are used. Besides, the effectiveness of
using pressure gradient models to remove the particle clamping
artifact is influenced by a large number of other factors including
kernel normalization [He et al. 2020], boundary conditions [Yang
et al. 2016], etc. However, none of those previous methods have
touched the essence of the tensile instability problem.

Back to the nature of tensile instability, its occurrence is believed
to be arising from the mismatch between the stress state and the ker-
nel function [Swegle et al. 1995]. Belytschko and Xiao [2002] showed
that the tensile instability can be completely removed when the par-
ticle kernel is defined as a function of the material (Lagrangian)
coordinates. While fully Lagrangian kernels are impossible to define
in the case of large deformation problems, the occurrence of tensile
instability can be attributed to an error in particle approximation
when using Eulerian kernels instead of Lagrangian kernels [Be-
lytschko and Xiao 2002]. The question is: how can we reduce the
error in particle approximation when using Eulerian kernels since it is
not possible to be completely removed? We propose a dual-particle
framework to address tensile instability in fluid simulation. Aside
from original fluid particles, which carry the particle masses and
velocities, we introduce additional "stress points" to carry the parti-
cle pressures. In the following discussion, we call the original fluid
particles as real particles while the generated "stress points" as
virtual particles for simplicity. With virtual particles generated,
the Navier-Stokes equation is then discretized with Eulerian ker-
nels defined on both real and virtual particles. Since generating
virtual particles follows a custom rule, it allows us to obtain a regu-
lar enough distribution of virtual particles, and effectively reduces
tensile instability in standard SPH by narrowing down the unstable
regions of Eulerian kernels under a tensile stress state. Compared to
other particle based approaches, our dual-particle approach is easy
to implement, yet can capture rich thin features of fluids without
requiring us to clamp negative pressures to zero. Besides, although
our method shares similarities with the hybrid particle-grid (HPG)
method [Fei et al. 2021], the methodology employed in this study

relies exclusively on SPH discretization [Koschier et al. 2019], im-
parting distinct characteristics that differentiate it from the HPG
method, as elucidated in Section 6.3.

In summary, we have made the following contributions:
• A dual-particle approach to address the tensile instability in
fluid simulation.
• A reformulation of the SPH approximate projection method
based on our dual-particle framework, in which the velocity
and pressure fields can be defined at different locations.
• A spatially-adaptive strategy to generate virtual particles
from real ones in parallel, where the regularity and compact-
ness for the particle distribution are guaranteed.

The outline of this paper is as follows. Section 3 first gives a
brief introduction of the tensile instability issue followed by our
motivation to address the problem. Section 4 demonstrates the nu-
merical implementation of our dual-particle approach in solving
incompressible free-surface flows. Section 5 illustrates three typical
strategies to generate virtual particles. The remaining sections pro-
vide a variety of evaluations and examples to show the superiority
of our dual-particle approach over previous methods in terms of sup-
pressing tensile instability and enriching small-scale thin features
of SPH fluids.

2 RELATED WORK
In this section, we first summarize previous works on SPH methods
that deal with the tensile instability. Then, we present a brief intro-
duction to the hybrid particle-grid methods due to the similarities
to our dual-particle approach.

2.1 The tensile instability in the SPH methods
SPH was first invented by Gingold, Monaghan and Lucy to simulate
interstellar flows [Gingold and Monaghan 1977; Lucy 1977], and
introduced into the computer graphics community by Desbrun and
Cani in 1996 [Desbrun and Gascuel 1996]. After this, numerous
studies have focused on using SPH to model free surface flows in
computer graphics [Ihmsen et al. 2014b; Koschier et al. 2019, 2022],
To remove the severe time step restrictions of the original SPH
method [Becker and Teschner 2007; Müller et al. 2003], researchers
propose to either use iterative predictive-corrective schemes to
enforce a constant density [He et al. 2012a; Solenthaler and Pajarola
2009] or projection-based methods to enforce a divergence-free
velocity [Bender and Koschier 2015; Ihmsen et al. 2014a; Takahashi
et al. 2018]. To accelerate the convergence rate of the pressure solver,
a projection method based on an Eulerian grid is introduced into
SPH [Raveendran et al. 2011].

Tensile Instability. Long-term viability poses a significant chal-
lenge for SPH due to the persistent issue of tensile instability [Va-
condio et al. 2021]. As studied in Swegel et al [1995], the tensile
instability is largely attributed to the conflict between the stress
state and the second order derivative of the kernel function. Without
the tensile instability being addressed, particles will tend to clump
due to attractive interparticle pressure forces. To reduce tensile
instability, many approaches have been proposed in recent decades.
In the computer graphics community, the most commonly used way
is to avoid inter-particle attractive forces, e.g., clamping the negative
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pressure to zero or to use an artificial background pressure [Bender
and Koschier 2015; Ihmsen et al. 2014a; Macklin and Müller 2013;
Schechter and Bridson 2012; Si et al. 2018]. Unfortunately, small-
scale fluid details can also be removed due to the absence of negative
pressures. In engineering, the "tension instability control" (TIC) ap-
proach is used to control the value of background pressure [Lyu
et al. 2021; Sun et al. 2018, 2017]. However, this may introduce other
instability issues, such as particle oscillation, that require us to apply
a "stabilizer" to stabilize the simulation [Xu et al. 2009]. Another way
to deal with tensile instability is by using the gradient correction
scheme, which was first invented by Khayyer and Gotoh [2011] and
introduced to the computer graphics community by He et al. [2012b;
2020]. Moreover, the incorporation of pressure gradient estimation,
addressing non-momentum conservation as proposed by Sun et
al. [Sun et al. 2018], proves advantageous for enhancing the tensile
stability of the particle method. However, without completely re-
moving the colocational nature of standard SPH, its effectiveness
in reducing tensile instability is less persuasive (see Figure 10). Ac-
cording to the discussion in [Belytschko and Xiao 2002], the tensile
instability is a kind of numerical error introduced by particle ap-
proximation equipped with Eulerian kernels. Therefore, a totally
Lagrangian formalism (named as TLSPH) [Belytschko and Xiao
2002; Sun et al. 2021; Zhan et al. 2019] that uses a kernel function
of material coordinates is considered to be another effective way to
avoid tensile instability. However, these fully Lagrangian methods
are difficult to model fluids due to their complex motions. Zero-
energy mode. Researchers are also aware when all field variables
as well as their derivatives are defined at the same locations in the
SPH method, the zero-energy mode is another numerical issue that
aggravates the tensile instability. Therefore, additional stress points
are introduced to enhance the numerical stability by removing the
colocational nature in SPH [Chalk et al. 2020; Randles and Libersky
2000]. However, most previous SPH methods based on stress points
can only be used to model material with small deformations since
stress points and velocity particles need to remain interleaved.

Small-scale features. Instead of addressing the tensile instability
directly, some works aim to enhance the visual quality of small-scale
features of the fluid with other strategies. To correct the density
estimates at the free surface, Schechter et al. [2012] suggested to
create ghost particles around the fluid surface; To avoid numerical
instability on thin features of fluids, He et al [2014] proposed to
estimate the pressure at two scales and introduced the anisotropic
kernel to filter the pressure force. Furthermore, a number of surface
tension algorithms have been developed [Akinci et al. 2013; He et al.
2014; Yang et al. 2017a,b], which can minimize fluid surface area
and model the splashes of fluids. However, without the underlying
tensile instability being addressed, these techniques have limited
improvements on modeling the small-scaled thin features in fluids.

2.2 Hybrid Particle-Grid Methods
While pressure projection is preferred to be done on an Eulerian
grid [Batty et al. 2007; Chen et al. 2020b; Larionov et al. 2017] and
material tracking on Lagrangian particles [Chen et al. 2020a; Gissler
et al. 2019], early studies on the hybrid particle-grid methods aim
to attain both the benefits by using a hybrid strategy [Harlow 1964;

Harlow and Welch 1965]. Since the standard PIC suffers from sig-
nificant dissipation due to a direct interpolation between particles
and grids, Brackbill et al. [1986] proposed the Fluid-Implicit-Particle
(FLIP), whose idea is to only transfer velocity changes from the grid
to particles. In 1996, the hybrid particle-grid method was first intro-
duced to computer graphics to simulate fluids [Foster and Metaxas
1996]. Recently, Jiang et al. [2015] proposed APIC, which replaces
the local velocity field of particles with an affine velocity field to
preserve rotational and shearing motions. Fu et al. [2017] further
extended their work and presented the Poly-PIC method to better
preserve the energy and vorticity. Hu et al. [2018] introduced a
generalized form of the APIC and Poly-PIC methods by using a
Galerkin-style Moving Least Squares (MLS) discretization. Nakashi
et al. [2020] proposed a new PIC-like solver by integrating RBF-FD
(Radial Basis Function-Finite-Difference), which gives a higher-order
scheme for velocity transfer between the grid and particles. Fei et
al. [2021] proposed a new integration scheme that can effectively
reduce diffusion and dissipation of interpolations.
In terms of enhancing the splashing quality of fluids, Ando pro-

posed a method to effectively improve the stability of small-scale de-
tails by increasing the particle resolution in the splashing area. [Ando
et al. 2012]. Nonetheless, the present challenge lies in the com-
plexity of parallelizing the adaptive particle resolution strategy on
GPUs to attain superior computational efficiency. Gerszewski and
Bargteil [Gerszewski and Bargteil 2013] introduced the mass-full
FLIP method, which integrates unilateral incompressibility to sim-
ulate large fluid splashes. However, they observed that simulating
fluid thin sheets presents a challenge for their method.

Generally speaking, the hybrid particle-grid methods should have
the benefits of both Eulerian and Lagrangian methods. However,
compared to a fully Lagrangian method, the HPG methods typically
appear to be more dissipative in simulating fluids [Fei et al. 2021].
Besides, it is also not quite easy to preserve the whole volume
for hybrid particle-grid methods. Therefore, Cornelis et al. [2014]
proposed to combine the Lagrangian IISPH [2014a] method and
FLIP method [1986] to better preserve the volume.

3 A DUAL-PARTICLE FRAMEWORK
In this section, we will present the basic theory for simulating
incompressible SPH fluids, followed by our motivation to derive the
dual-particle approach.

3.1 Basic Theory
In an incompressible model, the governing equations for a free-
surface fluid can be written in a general form as follows

𝜌
𝐷v
𝐷𝑡

= −∇𝑝 + 𝜇∇2v + f (1)

∇ · v = 0, (2)

where v is the velocity, 𝑝 is the pressure, 𝜌 is the density, 𝜇 is the
kinematic viscosity, and f is the external force. To enforce fluid
incompressibility, the prediction-correction scheme first takes an
integration to calculate the intermediate velocity v∗ by only taking
account of the viscous and gravitational terms. Then, a second
corrective step is taken to update the intermediate velocity with the

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:4 • Shusen Liu, Xiaowei He, Yuzhong Guo, Yue Chang, and Wencheng Wang

Fig. 2. Demonstration of the particle pressure distribution using the approxi-
mate projection method [Cummins and Rudman 1999] imposed with a zero-
pressure Dirichlet boundary condition on the free surface boundary [Nair
and Tomar 2014]. Particle pressures are visually represented through color
coding, with purple and red particles situated in the negative fluid region,
while blue and green particles occupy the positive pressure region. The
particle count is 72𝑘 , the time step size is set to 0.001𝑠 , and the artificial
viscosity model (XSPH) is implemented with a parameter value of 0.05.

pressure term [Koschier et al. 2022]

v𝑛+1 = v∗ − Δ𝑡

𝜌
∇𝑝, (3)

where Δ𝑡 is the time step size, and the new velocity v𝑛+1 should
satisfy the divergence-free condition, i.e., ∇ · v𝑛+1 = 0. By inserting
Equation 3, the divergence-free condition can be fulfilled by solving
the following pressure Poisson equation (PPE)

∇ ·
(
1
𝜌
∇𝑝

)
=
∇ · v∗
Δ𝑡

. (4)

Assuming a zero-pressure Dirichlet boundary condition is imposed
on the free-surface boundary [Nair and Tomar 2014; Takahashi et al.
2018; Yang et al. 2016], solving Equation 4 yields the pressure field
distribution across particles containing both positive and negative
values, as illustrated in Figure 2.

Citing various engineering studies [Lyu et al. 2021; Monaghan
2000; Sun et al. 2019; Zhang et al. 2017], it is well-established that
negative pressure induces the onset of tensile instability. More specif-
ically, as the fluid is under a tensile stress state, attractive forces
originating from negative-pressure regions can lead to anomalous
particle clustering [Gotoh and Khayyer 2016; Zhang et al. 2017],
as illustrated in a snapshot at 𝑡 = 0.05𝑠 in Figure 2. Although it is
easy for us to weaken the tensile instability by simply clamping all
negative particle pressures to zero [Bender and Koschier 2015; Ihm-
sen et al. 2014a], the error introduced near free surface boundaries
may destroy thin fluid features. Note the DFSPH solver [Bender
and Koschier 2015] using the negative pressure clamping scheme
is unable to capture thin fluid sheets, as shown in Figure 23 and 24.
Therefore, the main purpose of this work is to find a solution to alle-
viate the tensile instability in particle methods, yet can still capture
all small-scale thin features.

3.2 Motivation
Before giving our solution, let us first investigate how tensile in-
stability arises from a particle method. Intuitively, tensile instabil-
ity occurs in presence of attractive inter-particle forces when the
inter-particle interaction strength increases as the two particles ap-
proach [Khayyer and Gotoh 2011]. Assume a particle 𝑖 is located in
the middle of two neighboring particles 𝑗 and 𝑘 in the right figure.

Fig. 3. The scenario involves the demonstration of three particles experi-
encing tensile stress. Particle 𝑗 and 𝑘 move apart at a small initial velocity
(0.05𝑚/𝑠), while particle 𝑖 , initially at rest, is positioned asymmetrically be-
tween particles 𝑗 and 𝑘 . Notably, only incompressibility solvers are utilized,
while artificial viscosity or alternative solvers are not employed. Our ap-
proach employs the dual-particle method with a spatially adaptive strategy
(S.C.). The PBF method [Macklin and Müller 2013] does not incorporate
adsorption in our implementation. The ISPH method [Nair and Tomar 2014]
maintains negative pressures. The DFSPH method [Bender and Koschier
2015] incorporates a negative-pressure clamping scheme. Additionally, the
VSSPH [He et al. 2020] extends the "staggered-particle" SPH method intro-
duced by He et al. [He et al. 2012b].

If particle 𝑖 suffers from the tensile insta-
bility problem, its balance can be easily
broken by slightly shifting its position
to left or right because the particle that
is closer can impose a larger force to
drive particle 𝑖 further apart. Figure 3 depicts the instability issue
discussed previously in one-dimensional space. Please observe the
distributions of all three particles and the curves representing inter-
particle distances plotted in Figure 4. In the PBF method [Macklin
and Müller 2013], the attractive inter-particle force is disabled, there-
fore particle 𝑖 remains stationary. The ISPH [Nair and Tomar 2014],
VSSPH [He et al. 2020] and DFSPH [Bender and Koschier 2015] all
preserve attractive inter-particle force. However, particle 𝑖 fails to
remain stable due to a larger attractive force from the left neigh-
boring particle. This kind of instability can lead to the formation of
voids and particle clustering on thin fluid sheets.

Fig. 4. Inter-particle distance of the three-particles scenario (Figure 3). (a)
The distance between particle 𝑖 and 𝑗 (𝑑𝑖 𝑗 ); (b) The distance between particle
𝑖 and 𝑘 (𝑑𝑖𝑘 ); (c) The difference between 𝑑𝑖𝑘 and 𝑑𝑖 𝑗 .
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Within the pairwise-force model, Swegle et al. [1995] has theoret-
ically demonstrated a sufficient condition to avoid tensile instability.
For an incompressible fluid solver, the sufficient condition is formu-
lated as

𝑝𝑊 ′′ > 0, (5)

where𝑊 ′′ is the second derivative of the SPH kernel function. No-
tice when a particle is under a tensile stress state, i.e., 𝑝 < 0, its
motion can remain stable only when the condition𝑊 ′′ < 0 is satis-
fied. Please refer to Figure 5 for a demonstration of a cubic spline
kernel function with the unstable regime𝑊 ′′ ≥ 0 plotted . To sim-
plify the following discussion, we only consider a one dimensional
problem with an equally-spaced distribution. Without loss of gener-
ality, we assume all fluid particles have the same types of physical
quantities and their movements are only affected by attractive pres-
sure forces. In a standard SPHmethod, both the particle pressure and
velocity are defined at the same locations as shown in Figure 5(a).
As a result, if particle 𝑖 is exactly located in the middle of its two
neighboring particles, it will stay static due to a zero net force. How-
ever, if particle 𝑖 deviates from its original position slightly to the
left, the pressure force f𝑗 exerted by particle 𝑗 becomes larger than
the pressure force f𝑘 exerted by particle 𝑘 . This indicates particle
𝑖’s movement can erroneously be accelerated due to the tensile in-
stability, causing pairwise clumping between particle 𝑖 and 𝑗 . From
Figure 5(a), it can also be noticed particle 𝑖 is just located inside
the unstable region, indicating particle 𝑖 may suffer from tensile
instability no matter how it moves between particle 𝑗 and 𝑘 .

To address the above problem, one simple way is to increase the
smoothing length ℎ to guarantee particle 𝑖 is located inside the sta-
ble region. However, if the smoothing length is too large, the details
and accuracies of the fluid may be smoothed out as well [Liu and
Liu 2010]. More importantly, a larger smoothing length requires a
much higher demand for both the computational and storage costs.
Motivated by the stress points used in soil mechanics [Chalk et al.
2020; Randles and Libersky 2000], we introduce additional virtual
particles (𝐽 and 𝐾) to store particle pressures, as demonstrated in
Figure 5(b). The pressure forces exerted on particle 𝑖 are now cal-
culated with its two neighboring virtual particles (𝐽 and 𝐾). It can
be noticed that particle 𝑖 is now located inside the stable region
of kernel functions defined on virtual particles. As a result, when
particle 𝑖 moves slightly from its original to the left, the pressure
force f𝐽 exerted by the left virtual particle becomes smaller than the
pressure force f𝐾 exerted by the left virtual particle, thus helps slow
down the particle clumping trend. Besides, it can be noticed tensile
instability can mostly be avoided when particle 𝑖 moves between
its two neighboring virtual particles by choosing an appropriate
kernel function. Finally, the removal of the colocational nature of
standard SPH helps completely remove the first-order sawtooth
mode (typically known as the zero-energy mode [Dyka and Ingel
1995]) which could grow under the tensile instability. As shown in
Figure 3 and 4, the method introducing additional virtual particles
ensures the particles remain well-distributed during the stretching
process, which is crucial for fluid simulation to capture streamlines
and thin sheets. Based on the above motivation, we will give more
details on how to setup our dual-particle approach in the following
context.

Fig. 5. Demonstration of tensile instability in a standard SPH and our dual-
particle method. Assume the particle is under a tensile stress state, i.e., 𝑝𝑖 <
0. The solid curves and the dashed curves respectively represent the first-
order and second-order derivative of the cubic spline kernel𝑊 [Koschier
et al. 2019]. The unstable regions are plotted for the cubic spline kernel.
Notice (a) in the original SPH method, particle 𝑖 is always in the unstable
region because of its colocational nature. (b) Our motivation is to reduce
the size of unstable regions for particles under a tensile stress state by
introducing additional pressure calculation points, i.e., virtual particles 𝐽
and 𝐾 .

3.3 Dual-Particle Discretization
Our dual-particle framework uses two different kinds of particles to
carry field variables. The real particles carry particles’ original mass,
velocity, etc. Virtual particles are regenerated at the beginning of
each time step to carry particles’ pressure and their locations will
be updated in the next time step to stay close to the real ones. In
the following discussion, we use lowercase letters 𝑖, 𝑗 to denote field
variables defined on real particles while uppercase letters 𝐼 , 𝐽 for
field variables defined on virtual particles. By taking the summation
approximation based on our dual-particle model, and introducing
the discretization of the SPH method [Monaghan 1992], a physical
quantity 𝑞 can be computed with four different formulae as follows

𝑞𝑖 =
∑︁
𝑗

𝑉𝑗
[
𝑞 𝑗
]
𝑊

(
x𝑖 − x𝑗 , ℎ

)
𝑞𝑖 =

∑︁
𝐽

𝑉𝐽
[
𝑞 𝐽

]
𝑊

(
x𝑖 − x𝐽 , 𝐻

)
𝑞𝐼 =

∑︁
𝑗

𝑉𝑗
[
𝑞 𝑗
]
𝑊

(
x𝐼 − x𝑗 , ℎ

)
𝑞𝐼 =

∑︁
𝐽

𝑉𝐽
[
𝑞 𝐽

]
𝑊

(
x𝐼 − x𝐽 , 𝐻

)
, (6)
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Fig. 6. An overview of our dual-particle method. In our dual-particle approach, the velocity and pressure gradients are defined on real particles, while the
pressure, velocity divergence and pressure Laplacian are calculated on virtual particles. (a)~(b) Virtual particles are generated from real particles; (c1) Discretize
the divergence operator on virtual particles with respect to real particle; (c2) Discretize the Laplacian operator on virtual particles with respect to virtual
particles, and solve the pressure Poisson equation; (d) Calculate pressure gradients on real particles with respect to virtual particles; (e) Update real particles’
velocities.

where the hat is used to denote quantities that are calculated by
taking contributions from the neighboring virtual particles 𝐽 ,𝑊
is the SPH kernel function, ℎ and 𝐻 are the smoothing lengths of
real and virtual particles, and𝑉 is the particle volume. As suggested
by Koschier et al. [2019], the volume of real particle is directly
calculated as:

𝑉𝑖 =
𝑚𝑖

𝜌𝑖
, where 𝜌𝑖 =

∑︁
𝑗

𝑉𝑗
[
𝜌 𝑗
]
𝑊𝑖 𝑗 =

∑︁
𝑗

𝑚 𝑗𝑊𝑖 𝑗 . (7)

Since virtual particles lack the mass property, we cannot use the
above equation to compute its volume. To guarantee a smooth transi-
tion and ensure the stability of the simulation, Equation 6 is applied
to calculate the volume for virtual particles as follows

𝑉𝐼 =
∑︁
𝑗

𝑉𝑗
[
𝑉𝑗

]
𝑊

(
x𝐼 𝑗 , ℎ

)
=
∑︁
𝑗

𝑉𝑗
2𝑊

(
x𝐼 𝑗 , ℎ

)
, (8)

where x𝑖 𝐽 denotes x𝑖−x𝐽 . It can be found that when a virtual particle
moves far away from the boundary, its volume will be decreasing
to zero.

3.4 Our Algorithm
By combining the dual-particle discretization into an approximate
SPH projection method [Cummins and Rudman 1999], the full pro-
cedure to simulate incompressible fluids can be outlined as follows:

(1) Generate virtual particles according to the description in
Section 5.

(2) Compute particles’ volumes using Equation 7 and 8 .
(3) Discretize the pressure Poisson equation using Equation 11

and 14, then impose the free-surface boundary condition by
updating the diagonal elements of the coefficient matrix (see
details in Section 4.2).

(4) Solve the linear system of equations using a conjugate gradi-
ent method.

(5) Calculate the pressure force for real particles according to
Equation 16.

(6) Update velocities and positions for real particles and delete
virtual particles.

Please also refer to Figure 6 for an more intuitive illustration and
the pseudocode in Algorithm 1 for a detailed description.

4 DUAL-PARTICLE APPROXIMATE PROJECTION
In this section, we will discuss how to enforce fluid incompressibility
using an approximate projection within our dual-particle model.

4.1 The Pressure Poisson Equation
To discretize the pressure Poisson equation, a variety of different
strategies are actually available for both the Laplacian and diver-
gence operators in SPH community [Fürstenau et al. 2017]. Since our
main purpose is to verify the effectiveness of using our dual-particle
model to remove tensile instability, we choose to implement the
most commonly used approximate projection method introduced by
Cummins and Rudman [1999]. With an incompressibility assump-
tion, i.e., 𝜌 = 𝜌0, the pressure Laplacian (i.e., the left hand of the
Equation 4) can be defined on virtual particles as follows

L̂𝐼 (𝑝) =
2
𝜌0

∑︁
𝐽

𝑉𝐽
𝑝𝐼 − 𝑝 𝐽
𝑟𝐼 𝐽 + 𝜂

𝑊 ′𝐼 𝐽 , (9)

where𝑉𝐽 is the virtual particle volume with 𝐽 denoting all neighbor-
ing virtual particles, 𝑟𝐼 𝐽 =

x𝐼 − x𝐽
, 𝜂 is a small constant to prevent

being divided by zero, and𝑊 ′𝐼 𝐽 =
𝜕𝑊 (x𝐼 𝐽 ,𝐻 )

𝜕𝑟𝐼 𝐽
. In a similar way, the

source term in Equation 4 can be defined on virtual particles as
follows

D𝐼 (v∗) = −
1
Δ𝑡

∑︁
𝑗

𝑉𝑗v∗𝑗 · ∇𝐼𝑊𝐼 𝑗 , (10)

where𝑉𝑗 is the real particle volume with 𝑗 denoting all neighboring
real particles and ∇𝐼𝑊𝐼 𝑗 =

x𝐼 𝑗
𝑟𝐼 𝑗
𝑊 ′
𝐼 𝑗
. With the above two discretiza-

tions, a linear system of equations can then be formulated to solve
for the unknown pressure field.
However, the stable solve of the linear system of equations for

arbitrary particle configurations requires us to first address the two
following numerical issues.
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Particle deficiency. The form of Equation 10 may suffer large
errors near the free surface boundary due to the boundary deficiency.
To address this problem, Equation 10 is modified as follows [Koschier
et al. 2019]:

D𝐼 (v∗) = −
1
Δ𝑡

∑︁
𝑗

𝑉𝑗 (v∗𝑗 − v̄∗𝐼 ) · ∇𝐼𝑊𝐼 𝑗 , (11)

where v̄∗
𝐼
represents the intermediate virtual particle velocity mainly

used to reduce boundary errors. Since the virtual particle 𝐼 does not
store the velocity quantity in our dual-particle approach, we intro-
duce the corrective smoothed particle method [Chen and Beraun
2000] to estimate the fluid velocity at the virtual particle position:

v̄∗𝐼 =

∑
𝑗 𝑉𝑗v∗𝑗𝑊𝐼 𝑗∑
𝑗 𝑉𝑗𝑊𝐼 𝑗

. (12)

Note the intermediate virtual particle velocity v̄∗
𝐼
can be viewed as an

weighted interpolation calculated from neighboring real particles.
Density drifting. The particle density drifting problem should

be addressed to avoid permanent volume loss. A typical solution
is to add a compensation term to the source term of the pressure
Poisson equation [Khayyer and Gotoh 2011]. Since the pressure
Poisson equation is solved on virtual particles within our dual-
particle method, we should first calculate the virtual particle density
𝜌𝐼 =

∑
𝑗 𝑚 𝑗𝑊𝐼 𝑗 , and then add the following term to Equation 10

Λ𝐼 = 𝜅
max(𝜌𝐼 − 𝜌0, 0)

𝜌0Δ𝑡
, (13)

where 𝜅 represents a constant to control the value. In practice, 𝜅
is typically chosen to be of the same order of magnitude as𝑚/𝜌0
to ensure stability. Combining both Equation 11 and 13, the final
source term is formulated as D𝐼 (v∗)𝑛𝑒𝑤 = D𝐼 (v∗) + Λ𝐼 .

4.2 Boundary Handling
For a projection-based incompressible fluid solver, both free-surface
and solid boundary conditions should be appropriately incorpo-
rated. In the following discussion, we will show how to handle both
boundaries within our dual-particle framework.
Free-surface boundary condition. For particles near the free-

surface boundary, only particles inside the boundary contribute to
the summation integration in Equation 6 since there are no particles
outside the boundary. Within a projection method, a zero pressure
boundary condition should be imposed to guarantee the discretized
pressure Poisson (equation 4) obtain a positive-definite coefficient
matrix [Bridson 2015]. A common practice is to explicitly identify
boundary particles near the free-surface boundary, and assign zero
pressures on those particles [Takahashi et al. 2018]. Unfortunately,
identifying boundary particles explicitly will make the pressure
projection sensitive to the particle distribution because the zero-
pressure boundary condition is imposed on particles rather than
on a smooth transition region. Therefore, a semi-analytical method
was proposed to impose free-surface boundary conditions implic-
itly [Nair and Tomar 2014; Yang et al. 2016], which shows significant
improvement on the convergence speed and stability in solving the
pressure Poisson equation.
Motivated by their work, we will extend the semi-analytical

method and make it better suited to our dual-particle framework.

Fig. 7. Illustration of the free-surface boundary condition. A semi-analytical
scheme is applied to impose the free-surface boundary condition by setting
𝛼𝐼 = max(𝛼𝐼 , 𝛼0 ) , where 𝛼0 is precalculated at the beginning of simulation
for a prototype virtual particle filled with full neighboring real and virtual
particles. Note (a) when a virtual particle is located inside a fluid and far
away from the boundary, the summation of 𝛼𝐼 𝐽 could be larger than 𝛼0 due
to compression and we will not clamp its value; (b) Otherwise, if a virtual
particle 𝐼 is near the free-surface, the value of

∑
𝐽 𝛼𝐼 𝐽 is typically smaller

than 𝛼0, and we will clump its value to 𝛼0.

Unlike [Nair and Tomar 2014], virtual particles can be located out-
side of the free surface boundary. However, as the virtual particle
travels far away from the free surface boundary, its volume will be
small as well according to Equation 8. Therefore, the Laplacian oper-
ator of the pressure Poisson equation (Equation 4) can be uniformly
discretized as

L̂𝐼 (𝑝) =
2
𝜌0

∑︁
𝐽

𝑉𝐽 𝑝𝐼
𝑊 ′𝐼 𝐽
𝑟𝐼 𝐽 + 𝜂

− 2
𝜌0

∑︁
𝐽

𝑉𝐽 𝑝 𝐽
𝑊 ′𝐼 𝐽
𝑟𝐼 𝐽 + 𝜂

= 𝛼𝐼𝑝𝐼 −
∑︁
𝐽

𝛼𝐼 𝐽 𝑝 𝐽 ,

(14)

for all virtual particles, where 𝛼𝐼 and 𝛼𝐼 𝐽 are defined as

𝛼𝐼 =
∑︁
𝐽

𝛼𝐼 𝐽 , 𝛼𝐼 𝐽 =
2
𝜌0

𝑉𝐽𝑊
′
𝐼 𝐽

𝑟𝐼 𝐽 + 𝜂
. (15)

Note 𝛼𝐼 represents the diagonal elements of the coefficient matrix
of the discretized pressure Poisson equation, and 𝛼𝐼 𝐽 represents the
off-diagonal elements. According to Equation 8, the virtual particle
volume 𝑉𝐽 is smoothly decreasing across the free surface boundary.
Therefore, we identify a virtual particle as a boundary particle only
if its coefficient 𝛼𝐼 is smaller than a predefined threshold 𝛼0, as
shown in Figure 7. In our implementation, 𝛼0 is precalculated at
the beginning of simulation for a prototype virtual particle filled
with full neighboring real and virtual particles. The coefficient 𝛼𝐼
is clumped to 𝛼0 for all boundary particles when we solve the lin-
ear system of equations, i.e, 𝛼𝐼 = max(𝛼𝐼 , 𝛼0). This operation can
ensure the coefficient matrix is weakly diagonally dominant, the
discretized pressure Poisson equation therefore can be efficiently
solved with a standard iterative solver. Compared to a zero pres-
sure boundary condition imposed on particles, the implicit strategy
to only update the diagonal elements of the coefficient matrix for
boundary particles makes it possible to impose a smooth zero pres-
sure condition on the free-surface boundary. As a result, the motion
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Fig. 8. Illustration of the solid boundary condition.

of real particles is guaranteed to be smooth, and will not suffer from
the stair-step artifacts introduced by virtual particles.
Solid boundary condition.We impose solid boundary condi-

tions with standard ghost particles[Akinci et al. 2012; Bridson 2015;
Takahashi et al. 2018]. As shown in Figure 8, ghost solid particles
are evenly sampled in the solid region and assigned with the same
mass as real fluid particles. The ghost solid particles carry velocities
of solid materials, and they are also considered as real particles to
calculate the velocity divergence of the virtual particle (Equation 11).

4.3 Velocity Update
After the pressure Poisson equation is solved, the pressure field
defined on virtual particles is used to update the velocity of real
particles. Following a standard particle approximation, the pressure
gradient defined on real particles can be calculated as

G𝑖 (𝑝) =
∑︁
𝐽

𝑉𝐽 𝑝 𝐽 ∇𝑖𝑊𝑖 𝐽 . (16)

To simulate the interaction with solid boundaries, Equation 16 needs
to be corrected by the solid particles as well, i.e.,

G𝑖 (𝑝)𝑛𝑒𝑤 = G𝑖 (𝑝)𝑜𝑙𝑑 +
∑︁
𝑗𝑠

𝑉 𝑠𝑗 Projn𝑗𝑠
(v𝑖 − v𝑗𝑠 )𝑊𝑖 𝑗𝑠 , (17)

where the n𝑗𝑠 is the normal vector of the solid boundary at the
position of the solid particle 𝑗𝑠 , Projn𝑗𝑠

(v𝑖 − v𝑗𝑠 ) represents the
projection of v𝑖 − v𝑗𝑠 on vector n𝑗𝑠 [He et al. 2020]. As a result, the
real particle velocities can be updated as follows

v𝑛+1𝑖 = v∗𝑖 −
Δ𝑡

𝜌0
G𝑛𝑒𝑤𝑖 (𝑝) (18)

In general, particle methods prefer a regular distribution of parti-
cles to obtain simulations with high stability and accuracy [Fries and
Belytschko 2008]. The same situation comes up with the distribu-
tion of virtual particles. To evaluate how the distribution of virtual
particles affect the stability of fluid simulation, we introduce three
different strategies to generate virtual particles, as demonstrated in
Figure 9. The following contains our principle for each strategy as
well as the implementation details.

5 VIRTUAL PARTICLE GENERATION
S.A. Colocational strategy. Virtual and real particles share the
same locations.
• Principle and Implementation: To be comparable to a
standard SPH projection method where both velocity and
pressure are defined at the same locations [Cummins and

Rudman 1999; Takahashi et al. 2018; Yang et al. 2016], this
strategy is to simply assign real particles’ position to the
virtual particles and set 𝐻 = ℎ. By referring to algorithm 1, it
can be noticed that the dual-particle approximate projection
with this strategy degenerates to the original approximate
projection method (i.e., ISPH method) proposed by Cummins
and Rudman [1999].

S.B. Particle shifting strategy. Virtual particles are generated by
shifting the positions of real particles, and the distribution of virtual
particles is slightly more uniform than that of real particles.
• Principle and Implementation: Before giving our final
strategy to generate an ideal uniform distribution of virtual
particles, we try with a strategy, where virtual particles are
less well-distributed, to demonstrate how the distribution of
virtual particles affect the simulation results. We first gen-
erate a replica of real particles and assign their positions to
virtual particles as S.A. does, and then use the position-based
fluid (PBF) method [Macklin and Müller 2013] to slightly shift
virtual particles’ positions without updating the particle ve-
locities. During this process, all other terms including particle
inertia, viscosity and external forces are neglected, ensuring
that the distribution of virtual particles is more evenly dis-
tributed and matches real particles well.

S.C. Spatially adaptive strategy. Virtual particles are generated
to have a spatially adaptive uniform distribution. Unlike the first
two strategies, the virtual number in this strategy is dynamic.
• Principle and Implementation: In this strategy, our pur-
pose is to generate an ideal uniform distribution of virtual
particles. Besides, to reduce memory consumption, the cov-
erage of virtual particles should be compact. To obtain a
well-distributed yet compact distribution of virtual particles,
our solution is to generate virtual particles at equal-spaced
and orthometric fixed points around real particles.

In fact, there exist other strategies to generate virtual particles
in the dual particle framework. Nevertheless, we believe the above
mentioned three strategies are enough to demonstrate the effective-
ness of using virtual particles in suppressing the tensile instability.

Fig. 9. Illustration of the three different virtual particle generation strategies.
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Fig. 10. Rotating square fluid patch. The smoothing length of all particles are 0.0125𝑚, initial angular velocities are 2𝜋
3 𝑟𝑎𝑑 · 𝑠

−1, and an artificial viscosity of
0.03 [Schechter and Bridson 2012] is applied. The particle spacing for (a) and (b) is 0.0075𝑚 and 0.005𝑚 respectively, and the (real) particle number is 1.02k
and 2.3k respectively. In the scenarios, three other methods are implemented for comparison, including the position based fluid (PBF) [Macklin and Müller
2013], the divergence free SPH (DFSPH) [Bender and Koschier 2015] and the variational staggered SPH [He et al. 2020] (which can be viewed as an extension
to the staggered particle method [He et al. 2012b] ).

Since it is straightforward to implement the first two strategies,
we only give more details in the next section to show how to im-
plement the spatially adaptive strategy (S.C) on GPU to get a high
performance simulation.

5.1 Spatially adaptive virtual particle generation
While other sparse data structures, such as OpenVDB [Gao et al.
2018; Museth 2021; Museth et al. 2013; Wang et al. 2020], should
work with our dual-particle method, we prefer a GPU-friendly way
to generate spatially adaptive virtual particles to make the whole
simulation compatible with modern GPUs.
As shown in Figure 11, the full procedure is outlined as follows
(1) Update the positions of real particles and delete old virtual

particles generated at the previous timestep.
(2) For each real particle, generate candidate points within the

support domain of the real particle. The candidate point is
always initialized at cell vertices of a uniform Eulerian grid.

(3) Calculate the Morton codes for all candidate points.
(4) Sort in parallel the candidate points according their Morton

codes.
(5) Remove duplicative candidate points by comparing their Mor-

ton codes.
(6) Allocate a new buffer to store all unique virtual particles.

Notice implementation of all steps in the above procedure can be
fully parallelized on the GPU.

Fig. 11. An overview of our parallel implementation of the spatially adaptive
strategy (S.C.) to generate virtual particles.

6 EVALUATIONS AND DISCUSSIONS
In this section, we first provide a stability analysis using our dual-
particle approach in simulating incompressible fluids. Then, we
compare our method to both the hybrid particle-grid method and
the stress-particle SPH method to demonstrate the similarities and
differences between these methods.

6.1 Stability Analysis
To assess the efficacy of our dual-particle approach in mitigating
the tensile instability issue, we initially simulated the rotational
deformation of a square fluid patch, depicted in Figure 10, which has
been widely recognized in engineering as a classical measure for
evaluating the tensile stability[Colagrossi 2005; Khayyer and Gotoh
2011; Liu et al. 2018; Sun et al. 2017; Tsuruta et al. 2013]. In this
zero-gravity scenario, the square fluid patch is initially subjected to
a rigid-rotation velocity field defined as{

𝑢0 = 𝜔 (𝑦 − 𝑦𝑐 )
𝑣0 = −𝜔 (𝑥 − 𝑥𝑐 )

, (19)

where (𝑥𝑐 , 𝑦𝑐 ) is the center of the fluid patch, 𝜔 is the angular ve-
locity, and the divergence free condition for the velocity field is
fulfilled, i.e., ∇ · v0 = 0. In the evaluation process, the square fluid
patch experiences a centrifugal force resulting from a significant
negative pressure field. Consequently, it undergoes a gradual trans-
formation into a compact shape with four arms [Colagrossi 2005;
Sun et al. 2017]. Wemodeled this experiment using the same smooth-
ing length and two different particle resolutions. Both comparisons
show that most previous SPH methods in computer graphics fail to
suppress the tensile instability due to insufficient attractive inter-
particle forces under the same conditions. Moreover, doubling the
particle resolution does not effectively improve the stability. This
demonstrates that particle resolution is not the key factor in improv-
ing tensile stability. Within our dual-particle framework, the same
kernel functions and free-surface boundary conditions are used for
all three different virtual particle generation strategies. Our methods
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Fig. 12. The simulation involves rotating square fluid patches with vary-
ing virtual particle spacings and time steps. (a) Simulations using our S.C.
method with different virtual particle spacings, namely, 0.9𝛿𝑥 , 1.0𝛿𝑥 , 1.1𝛿𝑥 ,
and 1.2𝛿𝑥 , where the real particle spacing 𝛿𝑥 remains fixed at 0.005𝑚, and
the time step is set to 1𝑚𝑠 . (b) Simulations using our S.C. method with
different time steps, specifically 0.5𝑚𝑠 , 1.0𝑚𝑠 , 2.0𝑚𝑠 , and 4.0𝑚𝑠 , while both
virtual and real particle spacings are maintained at 0.005𝑚.

Fig. 13. Illustration of averaged particle distribution measure Γ for various
simulations in Figure 10 and 12. (a) simulations conducted with our method
using different virtual particle generation strategies; (b) simulations with
varying virtual particle spacings; and (c) simulations with different time
step sizes.

using S.A. and S.B. show improved performance in removing tensile
instability compared to other methods, yet particle clustering still
can be observed. By applying the S.C., our method is able to regen-
erate the correct behavior of the square fluid patch under rotation.
Besides, the particle distribution also remains regular during the
evolution of the rotating fluid patch.

From the above comparison, progressive improvement of the real
particle distribution can be found as the virtual particle generation
strategy changed from S.A., S.B. to S.C. Similar enhancements are
noticeable in the experiments depicted in Figures 16 and 24. It
appears that the sampling strategy of virtual particles is the key of
our dual particle approach to address tensile stability, indicating
removing the colocational nature and placing sufficient stress points
at uniform positions can substantially improve the tensile stability.
We will provide more evaluations in the following context.

It is important to note that the VSSPH method in Figure 10 also
introduces the "stress points" to discretize the pressure-Poisson
equation. However, unlike our method, the VSSPH method does not
explicitly generate "stress points", which means it cannot guarantee
the uniform distribution of virtual particles and fails to narrow down

Fig. 14. 2D Dambreak. Our method with S.C. simulates the dam break
example in the 2D space. Real and virtual particles are rendered as black
and red points, respectively.

the unstable regions for particles under a tensile state. Consequently,
it fails to weaken the tensile instability.

To elucidate the influence of virtual particle spacing and time-step
size on tensile instability, we conducted additional experiments, as
depicted in Figure 12. All experiments show no significant artifacts
of particle aggregation. However, employing larger time step sizes
or virtual particle spacings could result in an increased separation
speed between real particles, causing challenges in maintaining
accurate fluid shapes [Colagrossi 2005; Oger et al. 2007]. To quantify
the particle distribution in Figure 10, we propose the following
particle distribution measure for evaluating the performance of
various configurations

Γ𝑖 = 𝛽0

(
𝜌0 − 𝜌𝑖
𝜌0

)2
+ 𝛽1

����∑𝑗𝑉𝑗∇𝑖𝑊𝑖 𝑗∑
𝑗 𝑉𝑗𝑊𝑖 𝑗

����2 , (20)

where the constant coefficients 𝛽0 and 𝛽1 are set to 1.0 in our current
implementation. The first term assesses particle density, while the
second term evaluates the symmetry of the particle distribution
[He et al. 2014]. This combination helps quantify the quality of
the particle distribution. Figure 13 depicts the curve of measure Γ𝑖
applied to Figures 10 and 12, illustrating that distinctions between
time step sizes of 0.5 ms and 1.0 ms, as well as virtual particle
spacings between 0.9𝛿𝑥 and 1.0𝛿𝑥 , are negligible. Larger time step
sizes or virtual particle spacings may degrade the quality of the
simulation.

2DDambreak. To evaluate the stability of the free-surface bound-
ary condition, Figure 14 shows a 2D dam-break simulated with our
dual-particle method with S.C. Real and virtual particles are ren-
dered as black and red points, respectively. Notice when the real
particles move to cross the boundary of virtual particles, no obvious

Fig. 15. Dam break. We simulate this example with four different virtual
particle spacing distances. From Left to right, the spacing distances of
virtual particles are set 1.0𝛿𝑥, 1.2𝛿𝑥, 1.4𝛿𝑥 and 1.6𝛿𝑥 , respectively, where
the spacing distances 𝛿𝑥 is always set to 0.005𝑚.
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Fig. 16. Inviscid and viscous fluids. Each fluid block contains 237.3k particles. Splashes of the fluids usually occur in negative-pressure regions, which can cause
tensile instability. If computational efficiency is not considered, the top row shows our dual-particle method using S.C is the best approach for simulating
inviscid fluids since it preserves the coherence of particle motions. After introducing artificial viscosity (XSPH model with a parameter of 0.02), all simulations
demonstrate significant improvements. However, the comparison in the bottom row shows our method with S.C still produces the more stable thin-fluid
sheets, indicating the tensile instability introduced by the fluid incompressibility solver cannot be addressed by simply introducing artificial viscosity into
particle fluids.

artifacts or instabilities are observed, indicating the semi-analytical
free-surface boundary is stable within our method.
Different resolutions of virtual particles (Figure 15). Fig-

ure 15 further demonstrates the stability of using different resolu-
tions to generate spatially adaptive virtual particles. Notice similar
results can be produced for all four cases. In a practical implementa-
tion, we suggest using a spacing distance that is 1 to 2 times of the
spacing distance of real particles because too big a spacing distance
for virtual particles can smooth out fluid details. In the following
discussion, if not specified, the spacing distances of real particles
and virtual particles are both set to the same value, i.e., 𝛿𝑥 = 0.005𝑚.

Inviscid vs. viscous fluids. Simulating fluids with zero viscosity
has been regarded as a long-standing challenge for particle methods.
An artificial viscosity model (e.g., XSPH) is typically used to smooth
the velocity field in order to avoid unphysical oscillations in the
numerical results, thus making particles move more coherently. To
demonstrate whether our method is able to model inviscid fluids,

Fig. 17. Performance comparison. (a) Average iteration numbers of our
dual-particle approach using different time step sizes for the breaking dam
scenario in Figure 15; (b) Curve of the iteration number for a simulation
with a time step size of 0.001. The convergence criterion is set to 10−4 of
the maximum error for all simulations.

another dam break case is simulated, as shown in Figure 16. Com-
parison in the top row shows all previous methods as well as our
dual-particle method using the first two virtual particle generation
strategies cannot preserve coherent particle motions well in simu-
lating an inviscid fluid. In contrast, our method with S.C. shows best
in preserving coherent particle motions. After introducing artifi-
cial viscosity, all simulations demonstrate significant improvements.
However, a comparison in the bottom row shows our method with
S.C. still produces the best simulation results, indicating the tensile
instability introduced by the fluid incompressibility solver cannot
be addressed by simply introducing artificial viscosity into particle
fluids.
It is important to note that our method using S.C. can capture

more stable small-scale thin features, but this improvement comes
at a cost as the strategy may generate more virtual particles in
modeling fluids. Our method using S.C. requires more computing
time and consumes more memory in neighborhood lookup and
pressure calculation processes. Table 1 shows the virtual particle
counts and time costs for the three strategies in figure 16.

6.2 Performance Comparisons
We first present comparisons of our method with the three different
strategies to generate virtual particles. Figure 17(a) shows the aver-
age computational cost per time step in solving the linear system of
equations remains nearly constant for all three sampling strategies
for a breaking dam with different time step sizes. In addition, the
comparison between the three strategies shows that, despite slower
convergence, S.C. can use a larger time step size for simulation than
the other two strategies. Figure 17(b) shows the iteration number
curve for a simulation with a timestep size of 1𝑚𝑠 , the comparison
demonstrates that the S.B. has a faster convergence speed.

To illustrate the efficacy of our method, we conducted simulations
of a dam-break scenario with varying time step sizes. The results,
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Fig. 18. Dambreak simulation with varying time step sizes. The average
iteration count for per time step is detailed in each fluid block below. In
this test, each fluid block containing 237.3k particles, the artificial viscosity
is set to 0.1, the particle spacing 𝛿𝑥 is set to 0.005𝑚, and the smoothing
length is set to 2.5𝛿𝑥 .

including the average iteration count for each computationalmethod
utilized, are depicted in Figure 18. In this experiment, the allowable
average density and divergence errors for each method are set to be
less than 10−3. In contrast to alternative approaches, our method,
particularly with S.C., yields better results with a large time step of
Δ𝑡 = 5𝑚𝑠 .

6.3 Comparison to the Hybrid Particle-Grid Method
Comparing our dual-particle approach to the hybrid particle-grid
method [Fei et al. 2021; Um et al. 2014], we can find similarities, e.g.,
the virtual particles in our method resemble the Eulerian grid in
the hybrid particle-grid method. However, they are essentially two
different approaches. We will demonstrate their differences in this
subsection.

In a hybrid particle-grid method, the pressure projection is identi-
cal to the standard Eulerian grid method, and particles are only used
to track materials and carry quantities such as velocities. Depending
on the interpolation method between the particle and background
grid, all hybrid particle-grid methods can be mainly classified into
the following categories:

• Particle-In-Cell (PIC): The velocities or momentums di-
rectly transfer between particles and the background grid,
and the velocities or momentums on particles are not retained
after the particle-to-grid (P2G) interpolation [Harlow 1964].
Due to the excessive numerical dissipation of the original PIC
method, other variants with higher-order accuracies, such as
Affine-PIC (APIC) and Polynomial-PIC (PolyPIC), are devel-
oped.We take the standard PICmethod as an example, and the
equations for the particle-to-grid (P2G) and grid-to-particle

(G2P) interpolations are formulated as:

PIC P2G:𝑚𝑔v𝑛𝑔 =
∑
𝑝 𝑤𝑔𝑝𝑚𝑝v𝑛𝑝

PIC G2P: v𝑛+1𝑝 =
∑
𝑔𝑤𝑔𝑝v𝑛+1𝑔

x𝑛+1𝑝 = x𝑛𝑝 + Δ𝑡
∑
𝑔𝑤𝑔𝑝v𝑛+1𝑔

where𝑚 is the mass,𝑤 is the interpolation function, x is the
particle position, v is the velocity, 𝑛 denotes the timestep,
subscripts 𝑔 and 𝑝 represents physical quantities defined on
the grid and particle, respectively.
• Fluid-Implicit-Particles (FLIP): The basic idea of the FLIP
method is to try to blend the velocity defined on the back-
ground grid and particles. The high-frequency velocity fields
defined on particles are partially retained during the G2P
step to mitigate excessive numerical dissipation in the PIC
method [Brackbill and Ruppel 1986]. The P2G and G2P pro-
cesses in FLIP are written as:

FLIP P2G:𝑚𝑔v𝑛𝑔 =
∑
𝑝 𝑤𝑔𝑝𝑚𝑝v𝑛𝑝

FLIP G2P: v𝑛+1𝑝 =
∑
𝑝 𝑤𝑔𝑝v𝑛+1𝑔 + 𝛼

(
v𝑛𝑝 −

∑
𝑔𝑤𝑔𝑝v𝑛𝑔

)
x𝑛+1𝑝 = x𝑛𝑝 + Δ𝑡

∑
𝑔𝑤𝑔𝑝v𝑛+1𝑔

where 𝛼 is the blending ratio between FLIP and PIC. Note
a fraction of the high-frequency velocity modes defined on
particles is retained. Therefore, a value of 𝛼 that is close to
1 can effectively reduce the numerical dissipation in fluid
simulation.
• Naturally-modified FLIP (NFLIP): Following Fei et al. [2021],
the G2P and P2G processes of NFLIP [Stomakhin et al. 2013]
are written as:

NFLIP P2G:𝑚𝑔v𝑛𝑔 =
∑
𝑝 𝑤𝑔𝑝𝑚𝑝v𝑛𝑝

NFLIP G2P: v𝑛+1𝑝 =
∑
𝑔𝑤𝑔𝑝v𝑛+1𝑔 + 𝛼

(
v𝑛𝑝 −

∑
𝑔𝑤𝑔𝑝v𝑛𝑔

)
(21)

x𝑛+1𝑝 = x𝑛𝑝 + Δ𝑡v𝑛+1𝑝

Compared a standard FLIP method, the major difference here
is NFLIP uses v𝑛+1𝑝 rather than

∑
𝑔𝑤𝑔𝑝v𝑛+1𝑔 to update particle

positions. In other words, the high-frequency velocity modes
are added to particle positions as well. Therefore, particles in
the same sub-grid can move away from each other at a faster
speed.

Based on the above discussions, we can find several features that
distinguish our dual-particle approach from the hybrid particle-
grid methods. First, our method does not take the P2G transfer,
and the divergence of velocity defined on virtual particles is taken
with respect to the real particles directly (see Equation 11). Second,
our method updates particle velocities by directly taking pressure
gradients with respect to virtual particles. There is no G2P process to
transfer velocities from virtual particles to real ones as well. Third,
virtual particles carry all physical quantities (such as density, volume,
etc) similar to a standard particle in SPH, facilitating the solving of
the pressure Poisson equation (e.g., we can easily incorporate the
semi-analytical free-surface condition).
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Fig. 19. Comparison to hybrid particle-grid methods. In this scenario, we
perform simulations with the PIC, APIC, FLIP0.90, FLIP0.99, NFLIP0.90, Full-
NFLIP (𝛼 is set to 1.0) and our method with S.C. In order to keep fairness
for comparison, the grid spacing in all hybrid particle-grid methods is set to
be equal to the spacing distances of virtual particles in our method, and the
threshold in solving the pressure Poisson equation is set to 10−4, a density
error compensation scheme similar to Equation 13 is also added to all hybrid
particle-grid methods. Besides, all fluids are modeled as inviscid.

To provide more validation among those methods, we simulate a
dam-break scenario as shown in Figure 19. Apart from the discretiza-
tion, all conditions are identical in this comparison. In addition, for
all implementations, we added the density error compensation term
in Equation 13 to the source term of the pressure Poisson equation
to make the comparison fair. From the comparison, it can be noticed
that previous HPG methods fail to generate a regular distribution
of particles at the moment of the record. Besides, the comparison
shows that the Full-NFLIP is much more noisy than other methods,
which also matches the conclusion given in previous studies [Ando
et al. 2012; Fei et al. 2021; Jiang et al. 2015]. Within our method, we

Fig. 20. The kinematic energy is plotted over time for the rotating square
fluid patch test. All simulations maintain a real particle spacing of 0.005𝑚,
with grid spacing and virtual particle spacing set to 0.006𝑚, and a time step
size of 0.05𝑚𝑠 . It is observed that the rotating square fluid patches modeled
by hybrid particle methods incur higher energy losses compared to our S.C.
method.

Fig. 21. Illustration of the Stress-Point SPH method [Chalk et al. 2020]. (a)
Stress points move with their associated velocity particles; (b) The distri-
bution of velocity particles and stress points in an ideal case; (c) When the
material is deformed, some of the stress points may be too close to each
other or even overlap.

adopt the SPH form of the pressure projection, distinguishing it from
HPG methods that rely on Eulerian grid discretization schemes. The
SPH form discretization avoids the dissipation problem introduced
by P2G/G2P operations [Fei et al. 2021; Jiang et al. 2015] and allows
our virtual particles to carry a wider range of quantities than the
grids in HPG methods. Accordingly, our method achieves a more
stable result compared to the standard particle-grid methods, as
depicted in Figure 19.

To assess numerical dissipation, we perform multiple simulations
of a rotating square fluid patch and depict the total kinematic energy
curves in Figure 20. It is evident that HPG methods generally exhibit
higher energy losses compared to our method using S.C. Addition-
ally, both FLIP0.99 and the Full-NFLIP method exhibit markedly
unstable behaviors in this test.

6.4 Comparison to the Stress-Point SPH Method
Our dual-particle approach shares a motivation similar to the stress
point SPH method [Belytschko and Xiao 2002].

The stress-particle method was initially introduced Dyka [Dyka
et al. 1997], which incorporates a set of points to store stress and ad-
dresses the tensile instability inherent in the one-dimensional SPH
method. Subsequently, Randles and Libersky [2000] extended the
application of the stress-particle method to tackle the zero-energy
mode problem, boundary conditions, and tensile instability issues
associated with solid materials in two-dimensional space. However,

Fig. 22. Comparison to Stress-Point SPH Method [Chalk et al. 2020]. (a)
Our method using S.C.; (b) a combination of the stress point generation
method [Chalk et al. 2020] and our approximate projection method. In this
test, an artificial viscosity of 0.05 and a total of 560k particles are used. This
test shows that the Stress-Point SPHMethod is not robust enough to handle
large deformations.
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Fig. 23. Comparison of fluid stretching among different methods. A water fish drops on a ball under gravity. (a) all fluids are inviscid; (b) an artificial viscosity
of 0.05 is applied; (c) both the artificial viscosity and the surface tension model [He et al. 2014] are applied.

since the stress point SPH method needs to maintain a staggered ar-
rangement of stress points and velocity particles, it can only be used
tomodel materials with a relatively small deformation. To extend the
method to handle large deformation geomechanics problems, such
as soil samples and slopes, Chalk et al. [Chalk et al. 2020] recently
documented various node–stress-point configurations, highlighting
instances of success and failure among them. In fact, their work
fails to answer how to work out the best fit node–stress-point con-
figuration to simulate problems with large displacements and high
velocities.

Our dual-particle approach can also be viewed as an alternative
stress point SPH method, as virtual particles in our method are
introduced to store particle pressures only (note pressure and stress
have the same physics dimension). The major difference is that
"stress points" in our method are regenerated every timestep while
those in other stress point SPH methods follow their associated
particles through out the whole simulation. To demonstrate the
difference, Figure 22 shows a comparison between our method and
the stress-point SPH method given by [Chalk et al. 2020] (see Fig-
ure 21(a)). Notice the stress-point SPH method is quite unstable
because "stress points" can get too close to each other as demon-
strated in Figure 21(c). As a result, the simulation finally fails as
the fluid undergoes a large deformation while our method remains
stable throughout the whole simulation.

7 RESULTS
In this section, we simulate fluids in a variety of different scenarios.
All examples are run on a single machine with an Intel i7-8700k
CPU and an NVIDIA Geforce RTX2080 GPU, and time-consuming
parts (such as neighbor-list searching, incompressibility solver, etc)
are parallelized on the GPU. For all scenarios, the time step size is
set to 1𝑚𝑠 , the cubic spline kernel [Monaghan 1992] is used, the
real and virtual particle spacing 𝛿𝑥 are 0.005𝑚 if not specified, the
smoothing lengths of real particles and virtual particles are set to

2.5𝛿𝑥 . In all cases, the pressure solver terminates when the residual
of conjugate gradient iterations falls below 10−4 [Shewchuk et al.
1994].

7.1 Comparison to other particle methods
To verify the effectiveness of our dual-particle approach in im-
proving the tensile stability of particle-based fluids, we also imple-
mented several existing particle methods for comparison, including
the divergence-free SPH method (DFSPH) [Bender and Koschier
2015], the variational staggered SPH method (VSSPH) [He et al.
2020] which can be viewed as an extension to the staggered particle
method [He et al. 2012b], and the position-based fluids (PBF) [Mack-
lin and Müller 2013] with the adsorption force turned off.
Small-scale thin features of fluids (Figure 23 and 24). In

scenarios where the fluid undergoes splashing or forms thin sheets,
particles tend to move away from each other, creating negative-
pressure regions that trigger tensile instability. Therefore, these
scenarios pose significant challenges for most particle-based meth-
ods. We setup a liquid collision example to compare our method to
several existing approaches, as shown in Figure 23. In this test, the
PBF method fails to produce liquid sheets due to a lack of negative
pressures. In DFSPH and VSSPH, both suffer from tensile instability
due to the irregular distribution of fluid particles. Since the dual-
particle method with S.A is equivalent to the original approximate
projection method, the simulation results still suffer from tensile
instability. By instead using S.B, it can be noticed the tensile instabil-
ity issue is alleviated, but still not much. Our dual-particle method
using S.C shows the best performance in producing liquid films.
By adding a little viscosity, Figure 23 shows the simulation results
can be significantly improved for our dual-particle method with
S.C. Unfortunately, all other methods still fail to generate a liquid
film with uniformly distributed particles. We also use the surface
tension solver [He et al. 2014] to enhance the small-scale features of
fluids, but there are no significant improvements for other methods.
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Fig. 24. Two fishes collide in zero-gravity space. The XSPH artificial viscosity
model is applied and the parameter is set to 0.05.

The comparison in Figure 23 shows that if the tensile instability is
not weakened, the viscosity and surface tension have little effect on
improving the stability of small-scale details. The same results can
also be noticed with the simulation in Figure 24. In this scenario,
all methods except our method with S.C fail to capture stable thin
features of fluids.
Fountain (Figure 25). As shown in Figure 25, the fountain is

modeled by the PBF method [Macklin and Müller 2013], VSSPH
method [He et al. 2020]), and our method with S.C. This scenario
contains 1M fluid particles. The XSPH artificial viscosity is used and
the parameter is set to 0.05. According to the comparison, the PBF
fails to preserve a good shape liquid sheet due to missing attractive
interparticle pressure forces. Please note both the VSSPH and our
methods have taken into account of the corrective gradient scheme,
the semi-analytical boundary [Nair and Tomar 2014], the particle-
shifting technique [Xu et al. 2009] and the kernel normalization. The
only difference is our method defines pressure samplings on newly
created virtual particles. From the comparison, it shows our dual
particle framework can effectively reduce the tensile instability and
generate a much better well-shaped liquid sheet than that generated
by the VSSPH method [He et al. 2020].

Fig. 25. Fountain. A fountain consisting of 1M particles is simulated by the
PBF [Macklin and Müller 2013](Left), VSSPH method [He et al. 2020](Mid-
dle) and our method with S.C. An artificial viscosity of 0.05 is applied to all
simulations.

Fig. 26. Fishes. This scenario is simulated by our method using S.C.

7.2 More demonstrations
Due to the reduction of tensile instability, our dual-particle approach
can significantly improve the visual quality of SPH fluids. Figure 27
demonstrates highly viscous fluids. These viscous fluids with a
viscosity of 400𝑃𝑎 · 𝑠 are simulated with the PBF method [Macklin
and Müller 2013], VSSPH method [He et al. 2020] and our method,
respectively. The surface tension [He et al. 2014] is also applied to
the fluids. Our method achieves a more stable result in the compari-
son. Figure 1(Middle) demonstrates a cup dropped onto the ground
and a bulk of water consisting of 504.6k particles inside the cup
splashes out. In Figure 1(Right) several water fishes crash onto a
solid gargoyle, and countless small-scale thin features of fluid are
generated. This scenario contains 1.46M particles and the XSPH
artificial viscosity is set to 0.1. In Figure 26, several water fishes are

ALGORITHM 1: Dual Particle ISPH
while 𝑡 < 𝑡𝑠𝑡𝑜𝑝 do

for All real particle 𝑖 do
v∗
𝑖
← v𝑛

𝑖
+ Δ𝑡 · f ;

x∗
𝑖
← x𝑛

𝑖
+ Δ𝑡 · v∗

𝑖
;

end
Generate virtual particle 𝐼 ;
for All real particle 𝑖 and virtual particle 𝐼 do

Find real and virtual neighboring particles of 𝑖 and 𝐼 ;
end
Compute the volumes of virtual and real particles (Equation 7
and 8 ) ;

for All virtual particle 𝐼 do
Compute velocity divergence D𝐼 (v∗ ) (Equation 11);
Add Λ𝐼 (Equation 13) to D𝐼 (v∗ ) ;

end
Discretize the pressure Laplacian L̂𝐼 (𝑝 ) (Equation 14);
Impose the free-surface boundary condition;
for All virtual particle 𝐼 do

Solve the discretized Poisson pressure equation (Equation 4)
using the conjugate gradient method, until the residual is
less than a specific threshold;

end
for All real particle 𝑖 do

Compute pressure gradient G𝑖 (𝑝 ) (Equation 17);
end
for All real particle 𝑖 do

v𝑛+1
𝑖
← v𝑛

𝑖
− Δ𝑡

𝜌0
· G𝑖 (𝑝 ) ;

end
end
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Table 1. Statistics In these scenarios, the maximum allowable relative errors for our methods and VSSPH are set to 10−4, and The iteration number of PBF
method is fixed to 10. the spacing distances of real and virtual particles are all set to 0.005𝑚, the smoothing lengths are all set to 0.0125𝑚.

Name1 𝑁𝑟𝑒𝑎𝑙
2 𝑁𝑣𝑖𝑟𝑡 .

3 𝑡𝑝𝑟𝑒𝑠𝑠.(s)4 𝑡𝑣𝑖𝑟𝑡 .(s)5 𝑡𝑛𝑒𝑖𝑔ℎ.(s)6 𝑡𝑡𝑜𝑡𝑎𝑙 (s)7 Frame Number8 Total Time9

Fig. 1(Middle) 505k 0.57-1.1M 1.8 0.030 0.107 2.3 2400 1ℎ32𝑚𝑖𝑛
Fig. 1(Right) 1.5M 1.8-9.3M 5.2 0.088 0.375 5.9 2600 4ℎ15𝑚𝑖𝑛40𝑠
Fig. 25(Our Method) 1.0M <2.6M 2.7 0.016 0.125 2.9 1900 1ℎ31𝑚𝑖𝑛50𝑠
Fig. 25(VSSPH) 1.0M <2.6M 0.94 - 0.059 1.2 1900 38𝑚𝑖𝑛
Fig. 25(PBF) 1.0M <2.6M 0.32 - 0.056 0.41 1900 12𝑚𝑖𝑛59𝑠
Fig. 16(a)(S.C) 237k 312-401k 0.62 0.015 0.059 0.74 1600 19𝑚𝑖𝑛44𝑠
Fig. 16(a)(S.B) 237k 237k 0.37 0.045 0.059 0.51 1600 13𝑚𝑖𝑛36𝑠
Fig. 16(a)(S.A) 237k 237k 0.38 - 0.060 0.46 1600 12𝑚𝑖𝑛16𝑠
Fig. 16(a)(VSSPH) 237k 237k 0.41 - 0.015 0.47 1600 12𝑚𝑖𝑛32𝑠
Fig. 16(a)(PBF) 237k 237k 0.08 - 0.014 0.15 1600 4𝑚𝑖𝑛
Fig. 24(S.C) 144k 0.2-1.0M 0.35 0.010 0.032 0.41 600 4𝑚𝑖𝑛6𝑠
Fig. 24(S.B) 144k 144k 0.18 0.022 0.029 0.24 600 2𝑚𝑖𝑛24𝑠
Fig. 24(S.A) 144k 144k 0.16 - 0.030 0.21 600 2𝑚𝑖𝑛6𝑠
Fig. 23(a)(S.C) 72K 97-280k 0.20 0.006 0.024 0.24 600 2𝑚𝑖𝑛24𝑠
Fig. 23(a)(S.B) 72k 72k 0.077 0.019 0.019 0.12 600 1𝑚𝑖𝑛12𝑠
Fig. 23(a)(S.A) 72k 72k 0.078 - 0.019 0.11 600 1𝑚𝑖𝑛6𝑠
Fig. 26 1.5M 1.8-4.1M 4.5 0.086 0.29 5.0 1900 2ℎ38𝑚𝑖𝑛20𝑠
Fig. 27(Our Method) 520k 0.6-1.5M 1.08 0.033 0.10 1.6 1600 42𝑚𝑖𝑛40𝑠
Fig. 27(VSSPH) 520k 0.6-1.5M 0.62 - 0.024 0.97 1600 25𝑚𝑖𝑛52𝑠
Fig. 27(PBF) 520k 0.6-1.5M 0.23 - 0.025 0.66 1600 17𝑚𝑖𝑛36𝑠

1. S.A., S.B., S.C. respectively represent colocational strategy, particle shifting strategy and spatially adaptive strategy. 2. 𝑁𝑟𝑒𝑎𝑙 represents the number of real particles; 3. 𝑁𝑣𝑖𝑟𝑡 .

represents the number of virtual particles; 4. 𝑡𝑝𝑟𝑒𝑠𝑠. represents the average computational cost for solving Equation 4; 5. 𝑡𝑣𝑖𝑟𝑡 . represents the average computational cost for
generating virtual particles; 6.𝑡𝑛𝑒𝑖𝑔ℎ. represents the average computational cost for searching neighboring particles ; 7. 𝑡𝑡𝑜𝑡𝑎𝑙 represents the average total computational cost for one

frame; 8. "Frame Number" represents the total number of frames for the scenario; 9. "Total Time" represents the total computational cost for the scenario.

dropped onto the ground, it contains a total of 1.50M particles and
the parameter of XSPH artificial viscosity is set to 0.05.

8 CONCLUSION
We have presented a dual-particle approach to address tensile in-
stability in a projection-based fluid incompressibility solver. Under
the dual-particle framework, we demonstrate how to discretize the
approximate projection operator, the divergence operator and the
gradient operator used in a pressure Poisson equation on dual par-
ticles. Experiments show our method can effectively reduce the

Fig. 27. High viscous fluid. A high viscous fluid consisting of 500k particles
is simulated by the PBF Method [Macklin and Müller 2013] (Left), VSSPH
method [He et al. 2020] (Middle) and our method with S.C (Right). The
viscous model in [Liu et al. 2021; Weiler et al. 2018] and the surface tension
model in [He et al. 2014] are used for this example.

particle clustering artifacts introduced by tensile instability. Small-
scale thin features, such as liquid streamlets and sheets, can be well
preserved in incompressible free-surface flows. Our dual-particle
approach makes it possible to build a functional and robust SPH
incompressible fluid solver without relying on clamping negative
pressure. Besides, tests also demonstrate that the regular virtual
particle distribution is beneficial to alleviate the restriction on the
time step size for pressure projection in particle fluids.

9 LIMITATIONS AND FUTURE WORK
Our method has several limitations. First, it does not preserve the
momentum conservation property of traditional SPHmethods. How-
ever, the loss of momentum is small provided that the virtual particle
distribution is regular. Second, referring to previous works [Chen
et al. 1999; Liu et al. 1995], particle methods with a higher order
of consistency, such as the Corrective Smoothed-Particle Method
(CSPM) or Reproducing Kernel Particle Methods (RKPM), demon-
strate enhanced tensile stability in comparison to the standard SPH
method. Consequently, we aim to integrate higher-order accuracy
discretization schemes [Chen et al. 2020a; Reinhardt et al. 2019] into
our dual-particle framework to further enhance the performance
of our method. Third, the virtual particles increased the compu-
tational cost of our method, particularly for the S.C. Compared to
the standard SPH method such as DFSPH and VSSPH, our method
requires more memory and computational costs. However, the uni-
form distribution of virtual particles facilitates the application of
various acceleration techniques, and it would be interesting to study
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more neighbor querying algorithms, spatial acceleration structures,
multigrid methods and other projection acceleration algorithms to
improve the efficiency of the dual-particle approach. Fourth, S.C.
may not be the optimal approach to generate virtual particles due to
the meshless nature of the SPH discretization. We shall experiment
with other approaches, e.g., by using a GPU-based sparse octree,
to accelerate generating virtual particles. Fifth, it is worthwhile
to explore the applicability of the particle splitting strategy [Ando
et al. 2012] with the potential to notably improve the stability of
small, thin features in fluids. Nevertheless, implementing the parti-
cle splitting strategy poses challenges for parallelization on GPUs
and requires meticulous integration with the SPH discretization
method [Winchenbach and Kolb 2021]. Addressing these challenges
will be a focus of our future work. Finally, since the dual-particle
approach has been proven effective at removing tensile instability
for solving fluid incompressibility, we would like to extend this
approach to address tensile instability in other physical terms, such
as viscosity, elasticity as well as their interference.
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