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Fig. 1. Fashion show. We present a new GPU-based cloth simulation framework with projective dynamics. Our method is able to simulate high-resolution

cloth meshes at an interactive rate. With a non-distance-based barrier formulation, we can replace a large portion of traditional CCDs with the partial CCD

procedure, which is much less expensive. The subspace reuse strategy relaxes the low-frequency errors effectively at the cost of single-digit milliseconds. Our

method also features a residual forwarding trick to alleviate the damping issues generated by early termination and small-step line search filtering. In the

teaser, we show an animated scene of the virtual fashion show. The model, dressed in a soft and light midi skirt, walks to the front and then turns around.

These series of movements cause complex fabric dynamics, vividly showcasing the design concept of the garment. The garment is of high resolution and

has 340K vertices. The corresponding simulation involves over one million unknowns, and detailed local wrinkles can be well perceived. With a time step of

Δ𝑡 = 1/200 sec, the simulation runs at 4.8 FPS. Please refer to the supplementary video for the corresponding animations.

This paper pushes the performance of cloth simulation, making the simu-

lation interactive even for high-resolution garment models while keeping

every triangle untangled. The penetration-free guarantee is inspired by the
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interior point method, which converts the inequality constraints to barrier

potentials. We propose a major overhaul of this modality within the projec-

tive dynamics framework by leveraging an adaptive weighting mechanism

inspired by barrier formulation. This approach does not depend on the dis-

tance between mesh primitives, but on the virtual life span of a collision

event and thus keeps all the vertices within feasible region. Such a non-

distance barrier model allows a new way to integrate collision resolution

into the simulation pipeline. Another contributor to the performance boost

comes from the subspace reuse strategy. This is based on the observation that

low-frequency strain propagation is near orthogonal to the deformation in-

duced by collisions or self-collisions, often of high frequency. Subspace reuse

then takes care of low-frequency residuals, while high-frequency residuals

can also be effectively smoothed by GPU-based iterative solvers. We show

that our method outperforms existing fast cloth simulators by at least one

order while producing high-quality animations of high-resolution models.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: GPU simulation, cloth animation, colli-

sion detection, parallel computation
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1 INTRODUCTION

Cloth animation brings the simulated world to life in a vivid way,

endows virtual characters with an infinite array of new appearances,

and allows artists to lay their talents and inspirations on the tri-

angular mesh. The primary challenge for today’s cloth simulation

arises from the irreconcilability between the desired visual quality

and the limited computing resources – it is often the case that the

actual time budget allocated for the simulator is strictly capped e.g.,

in interactive design or games. Cloths and fabrics demonstrate in-

tricate dynamics under collisions and contacts, yielding captivating

fine deformations of wrinkles and folds. To faithfully capture those

effects, a high-resolution mesh is preferred, and the increased num-

ber of degrees of freedom (DOFs) further stresses the simulation

performance. This paper presents a GPU-based cloth simulation

framework which is one or even two orders faster than the state-of-

the-art GPU simulation algorithms for high-resolution cloth models.

Efficient processing of collision and self-collision of cloth is the

pivotal concern for a high-performance cloth simulator. Our method

is inspired by the recent success of incremental potential contact or

IPC [Li et al. 2020, 2021a]. When combined with CCD line search

filtering and projection-Newton solver, IPC offers a non-penetration

guarantee throughout the simulation process. It introduces a non-

linear repulsion between a pair of colliding or near-colliding prim-

itives, which becomes infinitely strong if they get closer to each

other. While this method has been proven robust, it requires repeti-

tive CCDs (continuous collision detection) to calculate the distance

between primitives in proximity – this is costly for detailed meshes

since all the triangles may be in contact. As a result, a dominant

computation in many cloth simulators becomes the CCD processing.

To address this issue, we design a novel barrier mechanism, which

adaptively re-weights the collision constraints when the collision

event exists over a continuous period of iterations, and does not

depend on the actual distance between primitives. Because of this,

most CCD procedures invoked in the simulation can be substantially

simplified.

On the solve side, we observe that existing GPU-based iterative

solvers are less effective for smoothing low-frequency errors. In

theory, this drawback could be remedied with model reduction or

multigrid techniques, which project the system into a prescribed

kinematic subspace. The difficulty comes from the nonlinearity of

the system matrix, which varies under changing cloth poses, and

constructing a subspace for each pose is not an option. To this end,

we design a subspace reuse scheme that leverages a low-frequency

rest-shape subspace for different deformed poses. This strategy well

synergizes with the projective dynamics (PD) framework [Bouaziz

et al. 2014] because the geometric nonlinearity of cloth dynamics is

taken care of in the local step, and the low-frequency subspace tends

to be less sensitive to high-frequency deformations. We carefully

exploit the structure of the global matrix in PD so that the expensive

subspace projection of the full global matrix can be pre-computed.

Our experiments show that subspace reuse cut the follow-up aggre-

gated Jacobi iteration by 70% on average.

Our algorithm is also equippedwith a residual forwarding scheme.

As time-critical applications allocate a limited time budget for the

simulator, early termination may lead to visual artifacts like over-

stiffening and damping due to the CCD-based line search filtering.

Residual forward estimates a ghost external force as the residual

force inherited from the previous step to relieve this issue.

In a nutshell, this paper proposes a simulator integrating several

novel features to address the core challenges in cloth simulation.

By deeply optimizing the pipeline, our method further pushes the

quality and efficiency of the simulation. It is guaranteed that the

resulting cloth poses are free of inter-penetration. Meanwhile, the

combination of reused subspace and aggregated Jacobi iterations

makes the solver effective for both low- and high-frequency defor-

mations. More importantly, most calculations are friendly for GPU

or any parallel computation platforms. The experiments show that

our method delivers high-quality animation results while being one

order faster than existing methods.

2 RELATED WORK

Cloth simulation has been extensively studied in past decades. A

vast volume of excellent contributions exists. Due to the page limit,

this section only briefly surveys a few representative prior works.

Cloth simulation. A common practice for cloth simulation is to

discretize its geometry with a mass-spring network [Choi and Ko

2002; Liu et al. 2013] or a triangle mesh [Baraff and Witkin 1998;

Terzopoulos et al. 1987; Volino et al. 2009]. Early techniques use

explicit integration with small time steps [Provot et al. 1995]. The

stability is improved by switching to the implicit integration [Baraff

andWitkin 1998], at the cost of assembling and solving the resulting

linearized systems. Cloth fabric is less extensible, showing strong

resistance to stretching. The discrepancy between its stretching and

bending behavior induces extra numerical difficulty. Strain limiting

is a simple and effective approach to mitigate this challenge [Provot

et al. 1995; Thomaszewski et al. 2009; Wang et al. 2010]. On the

other hand, being unstretchable also inspires a simplified quadratic

bending model [Bergou et al. 2006]. Cloth is more than an isotropic

hyperelastic continuum. Kim [2020] reveals the underlying connec-

tion between the Baraff-Witkin model [Baraff and Witkin 1998]

and anisotropic finite element method (FEM). One can finetune

the strain-stress relation to obtain an accurate material model i.e.,

see [Volino et al. 2009]. Data-driven methods have also been used

for this purpose [Feng et al. 2022; Sperl et al. 2022; Wang et al. 2011].

Collision processing. Collision handling has always been an in-

tegral part of cloth simulation. Discrete collision detection (DCD)

is an efficient method to identify the list of colliding primitives.

As the name suggests, DCD detects the inter-penetration at a spe-

cific time instance, and it fails to capture all the collision events

for models with thin geometries (such as garments) or fast-moving

objects. On the other hand, CCD offers a more robust way to detect

inter-penetration. Assuming the trajectory is linear within a time

interval, CCD calculates the first time of impact (TOI) between two

primitives. For triangularized surfaces, CCD is often modeled as the
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root finding of cubic equations. It is error-prone [Wang et al. 2021],

and robust numerical procedures are preferred [Wang 2014; Yuksel

2022]. The brute-force collision detection among all the primitive

pairs is prohibitive in general. A commonly adopted method is to

use some bounding volume hierarchy (BVH) [Langetepe and Zach-

mann 2006] to avoid excessive triangle-triangle intersection tests,

a.k.a collision culling. Various BVH types have been explored such

as AABB [Bergen 1997], OBB [Gottschalk et al. 1996], sphere [Hub-

bard 1995; James and Pai 2004], Boxtree [Zachmann 2002], spherical

shell [Krishnan et al. 1998] and so on.

To resolve the intersected triangles, the penalty method has been

a popular choice for its simplicity [Guan et al. 2012]. Buffet et al.

[2019] extend the implicit field of volumetric objects to open surfaces

to resolve the inter-penetration of multiple-layer cloth. Baraff et al.

[2003] and Wicke et al. [2006] employ an untangling method that

applies repulsion forces to minimize the colliding region for cloth-

cloth collisions. Volino and Magnenat-Thalmann [2006] and Ye and

Zhao [2012] minimize the length of the collision contour of the

colliding region. Instead of solving the collision and cloth dynamics

in a two-way coupled manner, Provot [1997] and Bridson et al.

[2002] suggest a post-simulation step grouping penetrating vertices

into impact zones. Huh et al. [2001] decompose the impact zone into

smaller colliding clusters based on their positions on the original

mesh. Harmon et al. [2008] relax impact zones with an inelastic

projection, allowing relative tangential movement.

Recently, an interior-point-based algorithm called incremental

potential contact (IPC) [Li et al. 2020] has been proposed, which

guarantees the simulation to be free of intersections. It has then been

generalized to the simulation of cloth/thin shells [Li et al. 2021a],

rigid/stiff bodies [Ferguson et al. 2021; Lan et al. 2022a], and curved

meshes [Ferguson et al. 2023]. IPC is highly time-consuming as a

CCD is needed at each nonlinear iteration to ensure the simulation

results stay within the feasible region. Lan et al. [2022b] approxi-

mate the logarithm barrier with an increasingly stronger quadratic

function so that the simulation fits the PD framework [Bouaziz et al.

2014]. Lan et al. [2023] decompose the global collision configuration

into local stencils. To reduce the cost of CCD, Wu et al. [2020] use

point-point distance constraints between triangle pairs to avoid in-

tersections. Another relevant prior art is from Ly et al. [2020]. This

method is also based on PD, and it incorporates Signorini-Coulomb

law [Brogliato and Brogliato 1999; Daviet et al. 2011] using con-

straint projections in a semi-implicit way. With a matrix splitting

scheme, it handles frictional contact robustly and efficiently. Our

method is orthogonal to [Ly et al. 2020] in the sense that we aim to

improve the performance for contact resolution using a non-distance

barrier-like formulation to adaptively adjust the collision weight in-

stead of resorting to complementarity programming [Moreau 1988].

Our subspace reuse technique may also be used in [Ly et al. 2020].

GPU-based simulation. In addition to collision, another computa-

tional bottleneck is the (nonlinear) system solve due to the use of

implicit integration. A widely used strategy is to convert the force

equilibrium (i.e., strong form) to the variational form (i.e., weak

form) [Gast et al. 2015; Kharevych et al. 2006; Li et al. 2019]. Doing

so offers new perspectives to the simulation in the light of optimiza-

tion such as constraint-basedmethods. One can locally and inexactly

solve those constraints via the the constraint projection [Goldenthal

et al. 2007], which highlights the potential for parallelization. For

instance, position-based dynamics [Macklin et al. 2016; Müller et al.

2007] uses per-vertex constraint projection making the simulation

matrix-free. Projective dynamics (PD) [Bouaziz et al. 2014] presents

a global and local alternation scheme to solve the nonlinear dynamic

system. PD quickly became a popular simulation modality because

its local projections are trivially parallelizable. Instead of solving its

global system exactly e.g., using Cholesky factorization, iterative

linear solvers can be used, such as Jacobi [Lan et al. 2022b; Wang

2015], Gauss-Seidel [Fratarcangeli et al. 2016] and preconditional

conjugate gradient (PCG) [Tang et al. 2013], which bring significant

speedups on the GPU. For more general and nonlinear models, so-

phisticated GPU algorithms are needed to decouple unknown DOFs

to obtain the global solution [Lan et al. 2023; Tang et al. 2018; Wang

and Yang 2016; Wang et al. 2023].

Model reduction & multigrid method. Model reduction is an accel-

eration technique that reduces the simulation cost. It uses a set of

reduced coordinates to pre-parameterize the simulation in the sub-

space and lowers the total number of unknown DOFs. Linear modal

analysis offers the optimal subspace approximate around the rest

shape [Choi and Ko 2005; O’Brien et al. 2003; Pentland and Williams

1989]. Large and rotational deformations are less intuitive. For StVK

models, one can pre-compute the coefficients of the reduced Hessian

and the internal force [Sifakis and Barbic 2012]. It is also possible to

combine modal analysis with stiffness warping [Müller et al. 2002]

at per-vertex local frames [Choi and Ko 2005]. However, doing so

suffers from ghost forces when simulating free-floating objects. An-

other collection of contributions builds data-driven reduced models.

For instance, Kim and James [2009] use recent simulation results to

construct the subspace at the simulation runtime. Shen et al. [2021]

and Fulton et al. [2019] use an autoencoder to encode the fullspace

DOFs using the latent representation. Model reduction can also be

coupled with PD. For instance, Brandt et al. [2018] design a reduced

model for both local projection and global solve. It is highly efficient

when the global matrix is constant (at the cost of missing some local

deformations). When the global matrix varies due to collision and

contact events or mesh’s topology changes, efficiently estimating

the updated subspace matrix becomes a challenge. A strategy is

to use Woodbury formulation to leverage the pre-factorized global

matrix for the rest shape and low-rank matrix update as in [Li et al.

2021b; Modi et al. 2021]. Apart from those existing methods, we

employ a novel subspace reuse method – the subspace constructed

at the rest shape is used for relax low-frequency errors. This strategy

requires minimum computational cost, while the high-frequency is

left for GPU-based iterative solvers.

Multigrid method [Trottenberg et al. 2001] is another common

technique to boost simulation efficiency when a large number of

DOFs is present. It was originally proposed to solve Poisson-like

equations abounded in fluid simulation [McAdams et al. 2010; Mole-

maker et al. 2008]. For deformable/cloth simulation, one needs to

represent the dynamics at different levels. The geometric multi-

grid (GMG) [Georgii and Westermann 2006] approaches this by

generating spatial discretization (e.g., meshes or grids) of differ-

ent resolutions. Xian et al. [2019] further simplifies this process
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by sampling points from the finest grid to form coarser grids. The

algebraic multigrid (AMG), on the other hand, approaches this by

generating a subspace of the fine dynamics, which shares a similar

nature of model reduction. For example, Li et al. [2023] utilize a

B-spline subspace, and Tamstorf et al. [2015] built the subspace by

QR decomposition on near-kernel components. Wang et al. [2018]

integrate multigrid into a nonlinear optimization process, which

updates the residue and system matrix periodically. Our method can

be understood as a two-level multigrid for the global step solve. The

reused subspace solve eliminates the low-frequency errors, leaving

the high-frequency to the aggregated Jacobi iterations.

3 BACKGROUND

To make the exposition self-contained, we start with a brief review

of projective dynamics and the distance-based interior point method

for collision resolution. The reader can find more details from the

relevant literature e.g., [Bouaziz et al. 2014; Lan et al. 2022b; Li et al.

2020].

Given an implicit time integration scheme such as backward

Euler, many state-of-the-art cloth simulators rely on the variational

formulation of:

argmin
𝑥

𝐸 = 𝐼 (𝑥, �𝑥) + Ψ(𝑥), 𝐼 = 1

2ℎ2
‖M 1

2 (𝑥 − 𝑧)‖2 . (1)

Here, 𝑥 is the unknown variable we would like to compute at the

next time step i.e., the position of all the cloth vertices. We also

have:

𝑧 = 𝑥∗ + ℎ �𝑥∗ + ℎ2M−1 𝑓𝑒𝑥𝑡 , (2)

as a known vector based on the previous position 𝑥∗, velocity �𝑥∗,
and an external force 𝑓𝑒𝑥𝑡 .M is the mass matrix, and ℎ is the time

step size. The objective function 𝐸 consists of the inertia momentum

(𝐼 ) offering a mass-weighted regularization over 𝑥 , and the elasticity
potential (Ψ) controlling the deformation of the cloth.

Under the framework of PD, Eq. (1) is split into two stages in the

form of local-global (LG) iterations. In the local stage, the unknown

DOFs are duplicated at individual constraints, which measure the

strain/deformation under various metrics like the change of the

edge length or the bending angle. The local step is formatted as:

argmin
𝑦𝑖

1

2
‖A𝑖S𝑖𝑥 − B𝑖𝑦𝑖 ‖2, s.t.𝐶𝑖 (𝑦𝑖 ) = 0. (3)

In other words, the local step computes a target position 𝑦𝑖 , which
not only satisfies the constraint 𝐶𝑖 exactly but is also closest to the

current value of 𝑥𝑖 i.e., a projection-like operator. Here, S𝑖 is a selec-
tion matrix picking DOFs relevant to 𝐶𝑖 from 𝑥 such that 𝑥𝑖 = S𝑖𝑥 .
A𝑖 and B𝑖 map the positional information of 𝑥𝑖 and 𝑦𝑖 to the specific
coordinate that the constraint 𝐶𝑖 measures. For instance, they can

be a differential operator computing the deformation gradient of a

triangle. The local step is highly parallelizable as the computation

at each constraint is independent.

The global stage follows as a standard linear solve:(
M

ℎ2
+
∑
𝑖

𝑤𝑖S
�
𝑖 A

�
𝑖 A𝑖S𝑖

)
𝑥 =

M

ℎ2
𝑧 +

∑
𝑖

𝑤𝑖S
�
𝑖 A

�
𝑖 B𝑖𝑦𝑖 . (4)

Intuitively, the goal of Eq. (4) is to blend duplicated DOFs 𝑦𝑖 to
produce a global solution of 𝑥 since 𝑥𝑖 could have multiple replicates

if it is involved in several constraints. As a result, the weight, i.e.,𝑤𝑖

in Eq. (4) embodies the priority of a constraint – a bigger𝑤𝑖 (relative

to other constraints) means the global solve favors 𝑥 being closer to

the corresponding 𝑦𝑖 . In an extreme case when 𝑤𝑖 → ∞, 𝑥𝑖 → 𝑦𝑖
ignoring all the other constraints. One should not confuse𝑤𝑖 with

the stiffness of the constraint: a high constraint stiffness produces a

big internal force, which could overshoot and must be coupled with

a line search for extra safeguards.

The presence of the collision and self-collision introduces a new

energy into Eq. (1):

argmin
𝑥

𝐸 = 𝐼 (𝑥, �𝑥) + Ψ(𝑥) + 𝐵(𝑥) . (5)

Codimensional geometries of clothes make the simulation sensitive

to inter-penetrations – once collisions or self-collisions are gener-

ated, the fabric often gets more and more tangled in the following

time steps. IPC [Li et al. 2020] offers a potential solution to the

challenge, which formulates 𝐵(𝑥) as a log-barrier such that:

𝐵𝑖 =

⎧⎪⎪⎨⎪⎪⎩
−𝜅 (𝑑𝑖 − 𝑑)2 ln

(
𝑑

𝑑

)
, 0 < 𝑑𝑖 < 𝑑

0, 𝑑𝑖 ≥ 𝑑.
(6)

Here, 𝑑 is a user-provided tolerance of the collision resolution. 𝑑𝑖 (𝑥)
denotes the closest distance between the 𝑖-th pair of surface prim-

itives, either a vertex-triangle pair or an edge-edge pair. 𝐵(𝑑𝑖 ) di-
verges if 𝑑𝑖 < 𝑑 and approaches ∞ when 𝑑𝑖 → 0. Consequently, as

long as we keep 𝑑𝑖 positive at the beginning of a time step (i.e., all

primitives are separate), the existence of 𝐵(𝑑𝑖 ) prevents any future

inter-penetration with an increasingly stronger repulsion. Lan et al.

[2022b] further showed that IPC barrier function can also be inte-

grated into LG iterations by setting the weighting function 𝑤𝑖 of

the collision constraint as 𝐵(𝑑𝑖 ).

4 NON-DISTANCE BARRIER

While IPC [Li et al. 2021a] and its PD variations [Lan et al. 2022b]

offer robust treatment for collisions, they are all based on 𝑑𝑖 . Here,
we name this family of barrier functions as the distance-based bar-

rier or DBB. Updating DBB is expensive – one needs to perform a

broad phrase collision culling to generate the list of vertex-triangle

or edge-edge pairs, compute TOI for each pair, identify the smallest

TOI which is between zero and one of all pairs, compute 𝑑𝑖 , and
eventually obtain the latest value of

∑
𝐵(𝑑𝑖 ). Such a full CCD proce-

dure is invoked frequently during LG iterations [Lan et al. 2022b]

and becomes the dominant computation along the pipeline.

We argue that not all DBBs are indispensable, and most of them

can be replaced with a more economic alternative model under the

PD framework. The underlying philosophy of DBB is to offer a

nonlinear penalty, which becomes stiffer when the collision con-

straint is about to be violated. DBB geometrically approximates the

indicator functions (𝛿A(𝑥) = 0, if 𝑥 ∈ A; 𝛿A(𝑥) = ∞, if 𝑥 ∉ A). A

DBB itself is not physically accurate i.e., the gradient of DBB differs

from the actual collision force unless 𝜅 in Eq. (6) is close to zero (i.e.,

the complementary slackness is sufficiently satisfied). In practice,

what we want is an increasingly strong repulsion to correct the

constraint violation, and this goal can be enabled without 𝑑𝑖 , the
actual distance between a pair of primitives. To this end, we design
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a non-distance barrier weight with exponential formulation:

𝑤𝑖 = 𝐵𝑁𝐷𝐵
𝑖 = 𝑘𝐾𝑎𝑖 , (7)

where 𝑎𝑖 ∈ Z
+ represents how many consecutive LG iterations has

the constraint 𝐶𝑖 been active. A contact constraint is considered

active if the primitive pair remains sufficiently close to each other.

𝑘 is an initial weight, and 𝐾 is the base of the growth rate. We use

NDB to denote this simplified barrier model. Similar to DBB, NDB

approaches to∞ if a collision constraint𝐶𝑖 remains unresolved over

several LG iterations. In this case, the local target position of the

constraint shall be satisfied with the highest priority in the global

solve. Unlike DBB on the other hand, NDB no longer depends on

the distance between primitives or any physically/geometrically

meaningful measures. It becomes a self-adjusting variable as the

optimization proceeds with minimum computation costs. As we

elaborate in the next subsection, this feature delivers substantial

convenience and speedup for cloth simulation.

Discussion. DBB takes the primitive distance 𝑑 (𝑥) as its parame-

ter. In contrast, our non-distance barrier (NDB) strategy does not

explicitly depend on the collision distance. Instead, it employs the

collision’s life span (i.e., number of iterations) to adaptively increase

the weight of the constraint. NDB is not a barrier function in a strict

sense since NDB is not explicitly related to 𝑥 . Nevertheless, it intro-
duces a penalty that asymptotically tends to infinity to prevent the

interpenetration between primitives. This feature ensures the opti-

mization variable 𝑥 remains within the feasible region, and works

in a similar way as the conventional interior-point method. One

limitation, however, is the accuracy of such a weighting mechanism.

Since the iteration index is a discrete count, it is sometimes challeng-

ing to produce sufficiently different repulsion forces to distinguish

nearby vertices. More iterations are therefore needed.

4.1 Partial CCD

An immediate advantage of using NDB is the alleviation of computa-

tional effort required for CCD. When updating 𝐵𝑁𝐷𝐵
𝑖 , it is sufficient

to determine whether a collision remains active after the previous

LG iteration, requiring a true-or-false response rather than an exact

time of impact. This characteristic enables a more streamlined ap-

proach for NDB CCD, transforming the cubic root-finding problem

into a series of dot product calculations, a technique we refer to as

partial CCD.

Starting from a collision-free configuration, if two primitives P1,

P2 collide with each other within a normalized time interval (0, 1],
there exist two points 𝑝1 ∈ P1 and 𝑝2 ∈ P2 which have intersecting

trajectories such that:

𝑝01 + 𝑡∗
(
𝑝11 − 𝑝01

)
= 𝑝02 + 𝑡∗

(
𝑝12 − 𝑝02

)
, (8)

where 𝑝01,2 and 𝑝
1
1,2 denote the positions of those two points at the

beginning and end of the time interval. 𝑡∗ ∈ (0, 1] is the intersection
time. With some manipulations, Eq. (8) can be re-written as:(

𝑝12 − 𝑝11

)
·
(
𝑝02 − 𝑝01

)
=
𝑡∗ − 1

𝑡∗
(
𝑝02 − 𝑝01

)
·
(
𝑝02 − 𝑝01

)
≤ 0. (9)

Eq. (9) suggests a non-positive inner product of
(
𝑝12 −𝑝11

) · (𝑝02 −𝑝01
)

at certain locations on P1 and P2 being a necessary condition of

the collision between primitives.

We then build a query function based on l.h.s. of Eq. (9) by pa-

rameterizing 𝑝1 and 𝑝2 with 𝜆 = [𝜆1, 𝜆2]� in their corresponding

primitives:

𝑄 (𝜆) =
(
𝑝12 (𝜆) − 𝑝11 (𝜆)

)
·
(
𝑝02 (𝜆) − 𝑝01 (𝜆)

)
. (10)

For a vertex-triangle pair specified by 𝑥 , 𝑥1, 𝑥2,
𝑥3 i.e., 𝑥 is the position of the vertex and 𝑥1,2,3
are the three vertices of the triangle as shown

in the inset on right, we have 𝑝1 = 𝑥 and

𝑝2 (𝜆) = 𝑥1+𝜆1 (𝑥2−𝑥1)+𝜆2 (𝑥3−𝑥1), where 𝜆1,
𝜆2 and 1− 𝜆1 − 𝜆2 are barycentric coordinates
of 𝑝2 in the triangle. Similarly, for an edge-

edge pair specified by 𝑥1,2 and 𝑥3,4, 𝑝1,2 are:
𝑝1 = 𝑥1 + 𝜆1 (𝑥2 − 𝑥1), 𝑝2 = 𝑥3 + 𝜆2 (𝑥4 − 𝑥3),
for 0 ≤ 𝜆1, 𝜆2 ≤ 1. Let Ω𝜆 be the domain of

the query function 𝑄 . It is easy to see that Ω𝜆
forms a triangle 𝜆1,2 ≥ 0, 𝜆1 + 𝜆2 ≤ 1 for a vertex-triangle pair, and

a box 𝜆1,2 ∈ [0, 1] for an edge-edge pair.

Since 𝑄 (𝜆) is continuous, 𝑄 < 0 prescribes some neighborhoods

around 𝜆∗, where 𝑝1 (𝜆∗) and 𝑝2 (𝜆∗) converges at 𝑡 = 𝑡∗. Instead of

solving 𝜆∗ and the corresponding 𝑡∗ i.e., as in most CCD algorithms,

we query the value of𝑄 (𝜆) at multiple sample points in Ω𝜆 . As long

as our sampling is sufficiently dense to notmiss those neighborhoods

of 𝑄 < 0, and all the queried 𝑄 (𝜆) values are positive, we conclude
that no collision occurs betweenP1 andP2. Eq. (10) does not involve

𝑡∗, meaning we skip the calculation for the actual TOI and only

compute inner products of 3-vectors. The question is: how dense

should the sampling be?

To answer this question, we first set up the metric of sampling

density. Let S =
{
𝜆(0) , 𝜆(1) , ...

} ⊂ Ω𝜆 be the set of sample points.

We define that local sample interval 𝜌 (𝜆) for any 𝜆 ∈ Ω𝜆 , 𝜆 ≠ 𝜆(𝑖 )
is the distance from 𝜆 to its nearest sample point in the parameter

space. More formally, 𝜌 (𝜆) gives the largest radius of the disc Ω(𝜆)
centered at 𝜆 such that Ω(𝜆) ∩ S = ∅. If 𝜆 = 𝜆(𝑖 ) happens to be a

sample point, its local sample interval is zero. The sample interval

of the whole sample set is defined as: 𝜌S = max𝜆∈Ω𝜆
𝜌 (𝜆). Based

on Lagrange Remainder Theorem, there exists an upper bound of

𝑄 (𝜆) for any 𝜆 ∈ Ω𝜆 :

𝑄 (𝜆) ≤ 𝑄 (𝜆∗) +
(
max
𝜆∈Ω𝜆

‖∇𝜆𝑄 ‖
) ��𝜆 − 𝜆∗

�� , (11)

which leads to a suffcient condition of 𝑄 (𝜆) ≤ 0:

𝑄 (𝜆∗) +
(
max
𝜆∈Ω𝜆

‖∇𝜆𝑄 ‖
) ��𝜆 − 𝜆∗

�� ≤ 0 ⇒
��𝜆 − 𝜆∗

�� ≤ 𝜌 = − 𝑄 (𝜆∗)
max
𝜆∈Ω𝜆

‖∇𝜆𝑄 ‖ . (12)

As the cloth is less stretchable, we assume that edge lengths of

P1 and P2 are bounded by 𝐿. Given a finite velocity, the distance

between P1 and P2 is bounded above by 𝐻1 during 𝑡 ∈ (0, 1], and
bounded below by 𝐻0 at 𝑡 = 0. We can then obtain an upper bound

ACM Trans. Graph., Vol. 43, No. 6, Article 226. Publication date: December 2024.



226:6 • Lei Lan, Zixuan Lu, Jingyi Long, Chun Yuan, Xuan Li, Xiaowei He, Huamin Wang, Chenfanfu Jiang, and Yin Yang

of the norm of ∇𝜆𝑄 :���� 𝜕𝑄𝜕𝜆1,2

���� ≤ 2𝐿(𝐻1 + 2𝐿) ⇒ ‖∇𝜆𝑄 ‖ ≤ 2
√
2𝐿(𝐻1 + 2𝐿) . (13)

According to Eq. (9), we also have:

𝑄 (𝜆∗) = 𝑡∗ − 1

𝑡∗
��𝑝02 − 𝑝01

��2 ≤ 𝑡∗ − 1

𝑡∗
(𝐻0)2 . (14)

Together with Eq. (13), a thresholding sample interval over Ω𝜆 can

then be obtained:

𝜌∗ =
(
1

𝛼
− 1

) (
𝐻0

)2
2
√
2𝐿(𝐻1 + 2𝐿)

. (15)

When 𝜌S is smaller than 𝜌∗, there is at least one sample point sitting

in a neighborhood of 𝑄 < 0. Here, 𝛼 < 1 is the hyperparameter

used in line search filtering, which is typically set as 0.8.

Discussion. Partial CCD is sample-based and can be considered as

an approximation of exact CCD algorithms [Brochu et al. 2012]. We

would like to mention that our method does not exclusively rely on

partial CCD. In other words, partial CCD, together with exponential-

based NDB collision constraint projection works as a warm start,

and regular CCDs are still performed during the simulation (but

at a much lower frequency). Therefore, we do not need to set the

sampling density to 𝜌∗ in practice (as this theoretical bound depends
on various factors and varies at each iteration). The performance

and the quality of the simulation are not sensitive to partial CCD

accuracy (e.g., see Fig. 9).

Eq. (15) appears sensitive to 𝐻0, the closest distance between P1

and P2 for 𝑡 ∈ (0, 1]. For instance, if a vertex is in the proximity

of the triangle at 𝑡 = 0 and hits the triangle at 𝑡 = 𝑡∗, 𝜌 (𝜆∗) of the
corresponding contact approaches zero i.e., the disc of Ω(𝜆∗) shrinks
to a point. This issue can be easily fixed by setting the projection

of the vertex on the triangle as a sample point if they are close to

each other. In some extreme cases, where the cloth is substantially

stretched or accelerated, we increase the sample density by scaling

the sample interval by the change ratio of 𝜌∗.
A quick benchmark well demonstrates the potential of such a

sample-based strategy: solving a cubic equation on the GPU as

in the original IPC implementation [Li et al. 2020] is slower than

evaluating Eq. (9) on a RTX 3090 GPU by over 6, 000 times. Partial

CCD is about 2, 000 times faster than the state-of-the-art polynomial

solver [Yuksel 2022]. For a high-resolution cloth model, we do not

need a lot of sample points on a primitive, making partial CCD faster

than regular CCD by orders of magnitude.

5 SUBSPACE REUSE

NDB enables a more affordable collision processing, but it does not

alter the fact that the optimization of Eq. (5) is highly nonlinear. Solv-

ing the systemwithin a limited time budget remains a computational

challenge for time-sensitive applications. Under the framework of

PD, the bottleneck is the linear solve at the global stage i.e., Eq. (4).

Commonly used strategies resort to iterative GPU solvers such as

Jacobi [Wang 2015] or Gauss-Seidel [Fratarcangeli et al. 2016] to

solve Eq. (4) inexactly. Unfortunately, the presence of barriers makes

those solvers less beneficial. Specifically, it is known that iterative

solvers are effective in smoothing high-frequency errors but become

Reference
Subspace +

A-Jacobi iter # 20
A-Jacobi
iter # 40

A-Jacobi
iter # 200

A-Jacobi
iter # 600

Fig. 2. Bending strips w. and w/o subspace. We simulate a collision-free

scene where a cloth strip bends under gravity. The model consists of 30K

DOFs. The resulting deformation is of low frequency, which is challenging

for Jacobi-like methods. A subspace solve effectively resolves this issue: only

20 A-Jacobi iterations are needed to fully converge the simulation, which

otherwise takes over one thousand iterations. Because the bending stiffness

is quite strong in this example, we need to assign a big SOR-like weight

(𝜔 = 0.9) to dampen each A-Jacobi iteration. Our method runs over 300 FPS

for this example, while PD-IPC [Lan et al. 2022b] is less than 0.5 FPS due to

the large number of A-Jacobi iterations.

cumbersome when dealing with low-frequency residuals. In con-

trast, low-frequency cloth deformation can be efficiently handled

using subspace methods. A concrete example is shown in Figs. 2

and 3. To this end, we tackle Eq. (4) using the reduced direct solver

and fullspace iterative solver, aiming to reap the goods from both

sides.

Our subspace is for the global stage only.While building a reduced

model for the local step is also possible [Brandt et al. 2018], we

explicitly avoid doing so to retain local details like wrinkles, folds,

and creases. The subspace matrix U is made of eigenvectors of l.h.s.

of Eq. (4), corresponding to 𝑟 smallest eigenvalues. We first solve

Eq. (4) in the column space of U for the reduced displacement 𝑞:

U�H (𝑋 + U𝑞) = U�𝑏 ⇒ (
U�HU

)
𝑞 = U� (𝑏 − H𝑋 )

⇒ Λ𝑞 = U� (𝑏 − H𝑋 ) , (16)

where H =
(
M
ℎ2 +

∑
𝑖 𝑤𝑖S

�
𝑖 A

�
𝑖 A𝑖S𝑖

)
and 𝑏 = M

ℎ2 𝑧 +
∑
𝑖 𝑤𝑖S

�
𝑖 A

�
𝑖 B𝑖𝑦𝑖

per Eq. (4). 𝑋 is rest-pose vertex positions.

As U is eigenvectors, U�HU = Λ becomes a diagonal matrix

of eigenvalues. If the constraint set stays unchanged during the

simulation, solving Eq. (16) is highly efficient on the GPU – we

only need one subspace projection for evaluating U�(𝑏 − H𝑋 ), and
diagonalized subspace solve is negligible. The resulting subspace

displacement of 𝑞 is then converted to its fullspace counterpart

as 𝑢 = U𝑞. At this point, most low-frequency errors have been

eliminated by the subspace solve, and 𝑥 = 𝑋 +U𝑞 represents an ideal

guess of Eq (4) for iterative solvers, which only has high-frequency

errors. We then use aggregated-Jacobi (A-Jacobi) as in [Lan et al.

2022b] to solve for Δ𝑥 to relax the (high-frequency) residual of 𝑥 :

H(𝑥 +Δ𝑥) = 𝑏 ⇒ HΔ𝑥 = 𝑏−H𝑥 ⇒ HΔ𝑥 = 𝑏−H(𝑋 +U𝑞). (17)
A representative experiment is reported in Fig. 2, where a cloth

strip is attached to the wall and gets bent under gravity. When

the low-frequency deformation is computed within the subspace

(𝑟 = 30), it only takes 20 A-Jacobi iterations to converge the simula-

tion to the ground truth i.e., the exact global solve. General A-Jacobi
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1×10-1

0 10 20 30 40 50 60 70 80 90 100
0

2×100

4×100

6×100

Initial1×10-1

0 10 20 30 40 50 60 70 80 90 100
0

2×100

4×100

6×100

A-Jacobi iter # 100
A-Jacobi iter # 0

0 10 20 30 40 50 60 70 80 90 100
0

5×10-3
1×10-2

1.5×10-2
2×10-2

Subspace + A-Jaboci iter # 0
Subspace + A-Jaboci iter # 5

1×10-31×10

Fig. 3. Spectral distribution of residual errors (w/o collision). We plot

the distribution of residual error over the first 100 modal bases of the strip

test (Fig. 2). As shown at the top, the dominant deformation is low-frequency,

which is efficiently solved within the subspace (bottom). On the other hand,

A-Jacobi iterations are not effective in dealing with low-frequency residuals.

100 A-Jacobi iterations barely lower the low-frequency errors, while the

high-frequency strains are well relaxed (middle).

iterations are not effective for such low-frequency deformations –

we observe noticeable visual difference even after 600 iterations (the

right-most beam). In this case, the bending stiffness of the cloth is rel-

atively high, and the vanilla Jacobi or A-Jacobi do not even converge.

We use a large successive over-relaxation-like (SOR)weight (𝜔 = 0.9)
to dampen each A-Jacobi update. The error distribution of this exper-

iment is plotted in Fig. 3, which is consistent with our previous analy-

sis.

Fig. 4. Subspace reuse. A
piece of tablecloth (66K

DOFs) drops on a wooden

Armadillo. Over 30% of ver-

tices are involved in colli-

sion constraints.

Collisions are ubiquitous in cloth simula-

tion, and H varies during the time integra-

tion. Building a new subspace at the simu-

lation runtime does not sound practical for

interactive simulations. Our key observa-

tion here is: while the global-stage matrix

is altered by different collision constraints,

the essential structure of its low-frequency

subspace remains unchanged. It seems coun-

terintuitive at first sight: how can old eigen-

vectors still be effective while the matrix is

modified? This is because low-frequency

modes built at the rest shape depict gen-

eral and global strain distribution over the

garment. This is not strongly coupled with

high-frequency deformations. For example, the appearance of local

wrinkles is less influenced by the overarching movements of the

cloth but more by the specific configurations of the corresponding

collisions. Interestingly, it is the low-frequency deformations that

most severely hinder the convergence of iterative solvers. By elimi-

nating or even just reducing these low-frequency errors, we could

significantly enhance the convergence of the subsequent Jacobi

method.

Following this rationale, our subspace reuse strategy pre-computes

U as eigenvectors of the smallest 𝑟 eigenvalues of H at the rest pose.

During the simulation, the new global matrix becomes H + ΔH i.e.,

ΔH is the modification of H induced by collisions or self-collisions.

0 10 20 30 40 50 60 70 80 90 100
0

2×101
4×101
6×101
8×101

Initial6×1006 10

0 10 20 30 40 50 60 70 80 90 100
0

2×100
4×100
6×100
8×100
1×101

Reuse + A-Jacobi iter # 0
Reuse + A-Jacobi iter # 5

8×10-18 10

0 10 20 30 40 50 60 70 80 90 100
0

2×101
4×101
6×101
8×101

A-Jacobi iter # 0
A-Jacobi iter # 5

6×1006 10

Fig. 5. Spectral distribution of residual errors (w. collision).We visu-

alize the distribution of residual errors over the first 100 modal bases of

the rest-pose global matrix H when the tablecloth covers the Armadillo (as

shown in Fig. 4). Subspace reuse does generate some low-frequency errors,

but it still helps the convergence of the A-Jacobi significantly.

0 500 1000
0

5×10-1

1×100

A-Jacobi
SOR + A-Jacobi
Subspace + A-Jacobi

A-JacobibbbA JacobiAAA JJaacoobbi--

0 100 200

Reuse + A-Jacobi
SOR + A-Jacobi
A-JacobiJ bibbA
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Fig. 6. Convergence curves w. and w/o subspace (reuse).We plot the

convergence curves for experiments in Figs. 2 and 4. We can see subspace

solve saves a large faction of A-Jacobi iterations even under intensive colli-

sions. The computation cost of one subspace solve, on the other hand, is

similar to performing one or two A-Jacobi iterations on average.

Despite the matrix change, we stick with rest-shape subspace and

solve 𝑞 out of the following reduced global-stage system:

U�(H + ΔH)U𝑞 =
(
Λ + U�ΔHU

)
𝑞 = U�(𝑏 − H𝑋 − ΔH𝑋 ). (18)

Solving the above system is slightly more expensive than Eq. (16)

since
(
Λ + U�ΔHU

)
is no longer diagonal. For a subspace of low

dimension e.g., 𝑟 = 30, it is still quite efficient using less than 0.1𝑚𝑠 .
Fig. 4 shows an experiment where a piece of tablecloth covers a

wooden Armadillo. The cloth has 66K DOFs, and over 25K DOFs are

associated with collision constraints. Similar to Fig. 3, we report the

error distribution for this simulation, where the subspace bases are

constructed with the rest-pose matrix H. Clearly, reused subspace

solve is less perfect compared with Fig. 3. It still effectively handles

low-frequency errors, which will need several hundred A-Jacobi

iterations otherwise. The convergence curves using subspace and

subspace reuse are reported in Fig. 6.

5.1 Pre-computed subspace update

The most expensive computation is the subspace projection of ΔH
i.e., evaluating U�ΔHU. The complexity is 𝑂 (𝑁 2𝑟 ) on the surface.

This is prohibitive even on the GPU if we want the simulation to be

interactive and high-resolution at the same time.
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Weobviate this difficulty exploiting the unique structure ofU�ΔHU.

First, we set A𝑖 = B𝑖 = Id in Eq. (3) as an identity matrix (Id) for

local projection of collision constraints whose target (collision-free)

positions are computed as in [Lan et al. 2022b]. With NDB, the target

positions can be achieved effectively within just a few LG iterations.

We note that ΔH becomes a diagonal matrix under this treatment.

Suppose that there are 𝑘 colliding vertices indexed as 𝑐1, 𝑐2, · · · ,
𝑐𝑘 , and the weights of the corresponding collision constraints are

𝑤1, 𝑤2, · · · , 𝑤𝑘 respectively. Let us denote each 𝑟 -dimension row

vector of U as𝑈�
𝑖 such that U = [𝑈1,𝑈2, ...]�. It can be verified that:

U�ΔHU =
𝑘∑
𝑗=1

𝑤 𝑗𝑈𝑐 𝑗 ⊗ 𝑈𝑐 𝑗 ∈ R
𝑟×𝑟 . (19)

Therefore the change of the subspace matrix caused by those 𝑘 col-

liding vertices is the weighted summation over 𝑘 rank-one matrices.

All of these𝑈𝑐 𝑗 ⊗𝑈𝑐 𝑗 can be pre-computed, and every𝑈𝑐 𝑗 ⊗𝑈𝑐 𝑗 is a
𝑟 ×𝑟 symmetric matrix. In practice, we only save its upper triangle at

each vertex, and the corresponding memory footprint is lightweight.

The computation of the summation, on the other hand, is unfolded

at each of 𝑟 (𝑟 −1)/2 matrix elements using CUDA. The pre-computed

subspace update using Eq. (19) is 50 to 150 times faster than directly

evaluating U�ΔHU using cuBlas.
After 𝑞 is computed, we use A-Jacobi to relax the remaining high-

frequency residual as in Eq. (17) and move to the next LG iteration

until the stopping criterion is satisfied. After an LG iteration, partial

CCD ensues, and 𝑤𝑖 of the collision constraints are updated per

Eq. (7). Our subspace reuse scheme can efficiently calculate the up-

dated (reduced) global matrix and allows the simulation to enjoy the

advantages of both subspace solvers and iterative solvers with small

computational costs. Such combined efficiency and convergence

are unseen in previous GPU algorithms (e.g., see Fig. 6). In practice,

we use two subspaces to handle simulation without and with col-

lisions (as detailed in Sec. 8.1). It is noteworthy that this method

is also highly effective for volumetric deformable models, where

low-frequency motions are particularly challenging for iterative

solvers.

6 RESIDUAL FORWARDING

In interactive applications, simulation modules normally have pre-

scribed time budgets regardless if the solver reaches the conver-

gence. This hard constraint forces the simulator to enter the final

CCD-based linear search filtering and truncate the position update

Δ𝑥 by the global TOI: Δ𝑥 ← 𝛼𝑡𝑇𝑂𝐼 · Δ𝑥 . If the TOI is a smaller

quantity, severe damping or locking artifacts could be produced as

a considerable portion of the system energy dissipates by the early

termination.

To partially alleviate this issue, we propose a post-step treatment

namely residual forwarding, or RF in short. The idea of RF is to

estimate the remaining residual generated by small-step line search

filtering and/or non-convergent LG iterations. Recall that each time

step, the simulation seeks a minimizer 𝑥★ of Eq. (5), which ideally

should possess a vanished gradient ∇𝐸 (𝑥★) = 0. By the end of

a time step, if LG iterations fail to fully converge, the resulting

𝑥∗ is different from 𝑥★ such that 𝑥★ = 𝑥∗ + 𝛿𝑥 . The gradient of

the variational energy ∇𝐸 (𝑥∗) = −𝑓𝑟 ≠ 0 represents unbalanced

residual forces in the system. RF seeks the virtual force 𝛿 𝑓 at the next
time step to mitigate the damping artifacts induced by 𝛿𝑥 . Therefore,
Eq. (2) becomes:

𝑧 = 𝑥∗ + ℎ �𝑥∗ + ℎ2M−1 (𝑓𝑒𝑥𝑡 + 𝛿 𝑓 ) . (20)

On the other hand, if the actual minimizer 𝑥★ = 𝑥∗ + 𝛿𝑥 were used,

the ground truth 𝑧 should be:

𝑧 = 𝑥★ + ℎ �𝑥★ + ℎ2M−1 𝑓𝑒𝑥𝑡 = 𝑥∗ + ℎ �𝑥∗ + 2𝛿𝑥 + ℎ2M−1 𝑓𝑒𝑥𝑡 . (21)

Note �𝑥★ = �𝑥∗ + 𝛿𝑥
ℎ also depends on the previous position under

implicit Euler. By adding 𝛿 𝑓 , RF offsets the derivation of 2𝛿𝑥 with

the compensation of ℎ2M−1𝛿 𝑓 .
To compute the optimal 𝛿 𝑓 , we Taylor expand ∇𝐸 around 𝑥★ as:

∇𝐸 (𝑥★) = ∇𝐸 (𝑥∗) + ∇2𝐸 (𝑥∗) · 𝛿𝑥 + 𝜖 (‖𝛿𝑥 ‖2), (22)

where 𝜖 is a quadratic error term. Because ∇𝐸 (𝑥★) = 0, we obtain:

𝛿𝑥 =
(
∇2𝐸 (𝑥∗)

)−1 (
𝑓𝑟 − 𝜖 (‖𝛿𝑥 ‖2)

)
. (23)

Assuming 𝜖 (‖𝛿𝑥 ‖2) is sufficiently small, themost effective RF should

minimize:

argmin
𝛿 𝑓

����ℎ22 M−1𝛿 𝑓 −
(
∇2𝐸 (𝑥∗)

)−1
𝑓𝑟

���� . (24)

Taking a closer look, it is noted that computing
(∇2𝐸 (𝑥∗))−1 𝑓𝑟

is equivalent to taking one more Newton solve by the end of the

previous time step, which can be efficiently approximated with

subspace reuse. In RF, we do not need to perform CCD-based line

search filtering, and the weights for all the collision constraints is 𝑘
i.e., 𝑎𝑖 for 𝑖-th collision constraint is set zero in Eq. (7).

Discussion. RF is a heuristic treatment when the current time

step must end for other time-critical tasks. If 𝜖 (‖𝛿𝑥 ‖2) is big, RF
becomes erroneous and generates artifacts. Honestly, there is noth-

ing much we can do if the available time budget is aggressively

restrained. Conceptually, RF moves some computation e.g., solve

for
(∇2𝐸 (𝑥∗))−1 𝑓𝑟 to the next time step. The advantage of RF is

skipping the line search filtering since 𝑧 could embody an overlap-

ping and penetrating configuration. The collision constraint set is

then updated in the follow-up LG iteration in the future time step.

RF, on the other hand, allows non-colliding vertices to move under

cloth momentum and elasticity even with a small 𝑡𝑇𝑂𝐼 (i.e., from

the previous time step). As a result, damping/locking artifacts are

ameliorated.

7 SIMULATION PIPELINE

We now have all the pieces to assemble our simulator. Fig. 7 visu-

alizes major steps along our pipeline, and the pseudocode is also

outlined in Alg. 1. The pre-computation stage performs the eigen-

decomposition of the rest-shape global matrix H, which ignores

the collision constraints. We use two subspaces to handle global

solves without and with collisions. Specifically, a subspace of higher

dimension is first constructed out of 𝑟 eigenvectors. Because the
rest-shape modal global matrix Λ = U�HU is diagonal, and the

subspace projection of r.h.s. vector is efficient on GPU, increasing

the dimensionality of the subspace for collision-free global solve

is worthy and effective. The first 𝑟 < 𝑟 eigenvectors of U form a
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Fig. 7. Algorithm overview. Our method leverages a subspace reuse technique to improve the convergence of GPU-based iterative solvers. A large portion of

costly CCDs is replaced with a non-distance non-distance barrier formulation i.e., NDB. The pipeline also features a residual forwarding mechanism, which

generates plausible animation even with small exiting TOI. We use a bigger subspace of 𝑟 dimension to obtain a good warm start at the beginning of each time

step. A more compact 𝑟 -dimension subspace is used for handling NDB-in-the-loop optimization. Each time step consists of several blocks of LG iterations,

which are visualized with curved double arrows.

ALGORITHM 1: Our simulation pipeline.

1: 𝑧 ← 𝑥∗ + ℎ �𝑥∗ + ℎ2 (M−1 𝑓𝑒𝑥𝑡 + 𝛿 𝑓 ) // 𝛿 𝑓 is from RF
2: 𝑥 ← 𝑧

3: ‖Δ𝑥 ‖ ← ∞
4: while ‖Δ𝑥 ‖ < 𝜖𝑖𝑛𝑖𝑡𝑖𝑎𝑙 do
5: Δ𝑥 ←ModalLG(𝐼 + Ψ) // in span(U)
6: end

7: 𝑥− ← 𝑥∗

8: 𝑥+ ← 𝑥 + Δ𝑥

9: 〈𝐵, 𝑡𝑇𝑂𝐼 〉 ← FullCCD(𝑥−, 𝑥+)// 𝐵 is the latest barrier
10: 𝑥 ← 𝑥 + 𝑡𝑇𝑂𝐼 · Δ𝑥
11: 𝑥− ← 𝑥

12: while outer loop convergence check fails do

13: while inner loop convergence check fails do

14: Δ𝑥 ←ModalLGReuse(𝐼 + Ψ + 𝐵) // in span(V)
15: 𝑥+ ← 𝑥 + Δ𝑥

16: 𝐵𝑖 ←PartialCCD(𝑥−, 𝑥+)
17: end

18: 〈𝐵, 𝑡𝑇𝑂𝐼 〉 ← FullCCD(𝑥−, 𝑥+) // update 𝐵 at each outer loop
19: end

20: 𝑥 ← 𝑥 + 𝑡𝑇𝑂𝐼 · Δ𝑥// exiting line search filtering
21: if 𝑡𝑇𝑂𝐼 < 𝜖𝑇𝑂𝐼 then

22: 𝐵𝑖 = 𝜅 // quadratic approximation of 𝐵
23: while ‖Δ𝑥 ‖ < 𝜖inner do
24: 𝛿𝑥 ←ModalLGReuse(𝐼 + Ψ + 𝐵)
25: end

26: 𝛿 𝑓 ← 2𝛿𝑥M

ℎ2

27: end

smaller set of bases V of a more compact subspace, and we set 𝑟 = 30

in our implementation. V is for subspace reuse when collision con-

straints are taken into account. For each vertex 𝑗 , we pre-compute

the corresponding 𝑉𝑗 ⊗ 𝑉𝑗 as in Eq. (19) for fast computation of

the updated subspace matrix. Lastly, U�H𝑋 and V�H𝑋 are also

pre-computed for faster assembly of the r.h.s. of the global solve

(i.e., Eqs. (16) and (18)).

Keeping V condensed is helpful for both efficiency and efficacy

of the simulation. From the efficiency point of view, we know Λ +

V�ΔHV is not diagonal. Solving a dense linear system is only feasible

when the system is of low dimension. From the efficacy point of

view, the subspace reuse is effective in the low-frequency realm.

Barrier constraints induced by collisions and contacts can drastically

change the higher-frequency landscape. As a result, expanding V to

the high-frequency spectrum is not beneficial. Since we will need

to save 𝑉𝑗 ⊗ 𝑉𝑗 for each vertex, a more compact 𝑉𝑗 is also more

memory-friendly.

Each time step begins with a warm-start computation. Typically,

𝑧 (i.e., in Eq. (20)) is used as the initial guess of 𝑥 at the current time

step and for setting up the initial constraints 𝐵𝑁𝐷𝐵 . As the collision

is ignored for the warm start, 𝑟 -dimension subspace provides a

better initialization by solving argmin𝑥 𝐼 + Ψ (line 5 in Alg. 1). The

decoupled computations in the modal space of span(U) make this

procedure highly efficient. For instance, the warm start only takes

three to five LG iterations and less than five milliseconds for a

300K-DOF simulation. The resulting 𝑥 is forwarded to the full CCD

procedure. The constraint list is then built, and 𝐵(𝑥) is initialized
(line 9).

Afterwards, the system solves for the optimization of argmin𝑥 𝐼 +
Ψ + 𝐵. Similar to existing barrier-in-the-loop PD algorithms [Lan

et al. 2022b], we employ a two-level iteration scheme. The outer loop

consists of multiple LG iterations, and the outer convergence check

is based on the norm of the change of 𝑥 between two consecutive

outer loops. If we uniformly scale the cloth meshes to a unit size,

‖Δ𝑥 ‖ ≤ 1𝐸 − 3 is a good choice for convergence check. For simula-

tions involving fast-moving objects, setting ‖Δ𝑥 ‖ ≤ 5𝐸 − 4 may be

needed. Each inner loop begins with a standard LG iteration. The lo-

cal projections are performed for both elasticity constraints (Ψ) and
collision/barrier constraints (𝐵). At the global solve, we re-use the
subspace V to smooth high-frequency errors and pass the residual to

A-Jacobi iterations. The convergence of the inner loop is also based

on ‖Δ𝑥 ‖ from the previous inner loop (‖Δ𝑥 ‖ ≤ 5𝐸 − 2). The partial

CCD routine is then invoked (line 16) to adjust the weights of colli-

sion/contact constraints. As discussed in Sec. 4, this computation

boils down to computing the inner products of 3-vectors.

By the end of each time step, a full CCD and an exiting line

search filtering are performed. They offer the algorithmic guarantee

that the simulation is free of inter-penetration. If the exiting 𝑡𝑇𝑂𝐼
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Fig. 8. Cloth twisting NDB. We rotate the table cloth at both ends for 2, 880 degrees. The simulation includes over 120K DOFs. Our method completes this

test at 12 FPS. Compared with the distance-based barrier weighted PD method i.e., [Lan et al. 2022b]. NDB saves about 30% LG iterations (as plotted in Fig. 9).

is too small suggesting possible locking and overdamping due to

insufficient outer loops, we trigger the residual forward, which

estimates an optimal correction force 𝛿 𝑓 for the next step.

8 EXPERIMENTAL RESULTS

We implemented the proposed simulation framework on a desk-

top computer with an intel i7-12700 CPU and an nVidia 3090
RTX GPU. We used Spectra library for computing the eigendecom-

position of the global stage matrix H. It should be noted that our

method is also friendly with other parallel computing platforms –

one can easily parallelize local projections using multi-threading,

and multicore CPUs are well suited for the Gauss-Seidel method.

Nevertheless, we only report the performance on the GPU. The

reader can find animated results in the accompanying video demo.

8.1 Implementation details

Most parts of our framework are matrix-free, except for the subspace

solve step of V�(H + ΔH)V. For solving a linear system of A𝑥 = 𝑏,
the common practice is to pre-factorize A and compute 𝑥 via forward

and backward substitutions. In our implementation however, we

directly obtain X ∈ R
𝑟×𝑟 via:

AX =
1

𝛽
Id, (25)

to get an approximation of X ≈ A−1/𝛽 . The reader should not

confuse A in Eq. (25) with A𝑖 used in local projection (e.g., Eq. (3)).

Here, A refers to the reduced global-stage matrix V�(H + ΔH)V
with subspace reuse. 𝛽 is a scaling factor estimated as 𝛽 =

∑ |𝑏𝑖 |/𝑟
i.e., the average of absolute values of elements in 𝑏. Doing so could

mitigate numerical drift induced by small or large values in 𝑏. This
is because calculating X via AX = Id implicitly assumes the r.h.s. of

the system is around one.

With X computed, the system solve becomes a matrix-vector mul-

tiplication of X𝑏, which can be parallelized on the GPU. The standard
forward/backward substitutions are sequential (even on the GPU).

When many LG iterations are needed, computing X𝑏 is more effi-

cient than using the factorized matrix. In our implementation, we

simply send A back to the CPU, compute X, and return it to the GPU.

Since the reused subspace has a very low dimensionality, it ensures

that the associated computations and CPU-GPU communications

are fast and require minimal resources. The whole procedure takes

less than 0.1 ms, which is 30%− 35% faster than factorizing A on the

GPU. Nevertheless, the system solve is not the bottleneck. In our

implementation, we use rank-2 A-Jacobi method, which computes

0 40 80 120 160 200 240
0

100

200

300

To
ta

l#
L-

G

DBB
NDB sample 1

NDB sample 2
NDB sample 3

# Frame

NDB - sample 1 NDB - sample 2 NDB - sample 3

Fig. 9. NDB vs DBB.We plot the total number of LG iterations at each time

step when twisting the cloth (as in Fig. 8) using DBB and exponential NDB.

It can be seen that our NDB formulation uses 25% to 30% fewer iterations on

average than DBB when allows the constraints to be adaptively re-weighted

in time. Partial CCD is not sensitive to the sample density. As shown in the

figure, increasing or decreasing partial CCD samples do not vastly alter the

convergence behavior of the simulation. Different sample patterns are also

visualized in the figure.

two regular Jacobi iterations with one step but using the same com-

putation time [Lan et al. 2022b]. Thanks to subspace reuse, weighted

SOR is never needed even for stiff simulations (e.g., Fig. 2). The base

of exponential NDB (i.e., Eq. (7)) is set as 𝐾 = 2 in our experiments.

Setting 𝐾 to 3 seems to produce a similar result. However, an over-

aggressive 𝐾 could negatively impact the convergence. In this case,

this exponential NDB behaviors like a geometric projection.

To fully exploit the capacity of modern GPUs, the broad-phase

collision culling leverages a patch-based BVH. Specifically, we build

an incomplete BVH whose leaf houses a small patch of the cloth

mesh. A patch consists of several inter-connected triangles, normally

five to eight. After the initial AABB-based culling at each BVH level,

from top to bottom, we exhaustively test triangle pairs between two

nearby patches as well as pairs within a patch. At the narrow phase

stage, if a full CCD is needed we solve 𝑡𝑇𝑂𝐼 for each primitive pair

using the polynomial solver proposed in [Yuksel 2022]. For partial

CCD, we compute inner products of Eq. (10) at pre-selected sample

points plus the projection points at 𝑡 = 0. We periodically check if a

denser sampling is needed given the current system velocity (since

the time step size is assumed fixed). Partial CCD is more efficient

for cloth models of higher resolutions. We noted that, as long as

the total number of DOFs exceeds 50K, very few sample points (e.g.,

three) work well for partial CCD in most simulation scenarios.
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Residual forward
50 iter

Residual forward
30 iter

Residual forward
5 iter

Newton-IPC

Fig. 10. Residual forwarding.We show an experiment where a piece of

tablecloth falls on the teapot. Residual forwarding estimates a virtual force

to restore the dynamics at non-colliding vertices in the next step. It produces

reasonably good results when the residual errors are moderate. RF fails to

handle all the errors with a highly constrained iteration cap. As we lower

the per-step iteration count, we observe more artifacts even using RF.

8.2 NDB & DBB

The first test we would like to show is a comparison between the

distance-based barrier (DBB) and exponential non-distance barrier

i.e.,NDB. The major difference lies in the fact that NDB allows

the weight of the collision constraint to be timely adjusted during

LG iterations based on inexpensive partial CCD. The snapshots of

the resulting simulation are reported in Fig. 8. We also compare

the total number of LG iterations using NDB and DBB for this

twisting test, and the plots are shown in Fig. 9. It can be seen that

this adaptive weighting strategy helps reduce iterations, as each

collision constraint is more likely to find an appropriate weight

during iterations. NDB strategyis not sensitive to the sample density

(𝜌). To this end, Fig. 9 also plots iteration counts for NDB with

different sampling densities. We can see that NDB works well even

using one sample point at the center of Ω𝜆 .

8.3 Residual forwarding

Our method employs RF to mitigate damping and locking artifacts

caused by limited time budgets. As discussed in Sec. 6, RF can en-

hance animation quality to a certain extent by “inheriting” unre-

solved residual errors from one time step to the next. The effec-

tiveness of RF is primarily up to the magnitude of these errors. We

observe that small and localized errors, resulting from early ter-

mination or line search filtering under a small TOI, are generally

well-managed by RF. Another factor is the capability of minimizing

residuals at the current time step. If the solver does not fully con-

verge at the current step, the carried-over residuals may exacerbate

simulation inaccuracies. RF is particularly designed for applications

facing strict time constraints, such as gaming, where high-speed

collisions might cause spiky FPS drops.

To better illustrate the effectiveness of RF, we simulate a scene

where the cloth drops on a teapot (Fig. 10). There are 120K DOFs

on the cloth. After the cloth comes in contact with the spout of

the teapot, the inertia effect further moves the cloth towards the

right, and the cloth eventually settles at the recess between the

spout and the body of the teapot. When we have the time budget to

complete 50 iterations per time step (which do not fully converge

the solver), RF produces a high-quality result nearly identical to the

ground truth – the one generated using a fully converged Newton

IPC solver. Our method runs at 20 FPS, which is 500× faster than [Li

et al. 2021a]. If we half the iteration number and exit the current time

step with the line search filtering, the simulator is unable to deal

Fig. 11. “Animal crossing”. The subspace reuse technique allows our solver
to handle stiff materials and deformable bodies with ease. This example

includes 33 animal toys, 10 elastic ribbons, 678K DOFs, and one million ele-

ments. Both our method and PD-IPC [Lan et al. 2022b] produce penetration-

free animations, while our method is 12× faster than PD-IPC on RTX 3090.

with all the residuals, and we can see dampened cloth movement

after it touches the teapot. Because of the early termination, the

cloth “sticks” to the tip of the spout as the rest part of the cloth is

locked (see highlighted area in the figure). Lastly, we further lower

the iteration cap to only five. We observe more severe damping

artifacts. Because of the subspace resue, our method still handles

low-frequency residuals well, but most high-frequency information

is lost due to an insufficient number of A-Jacobi iterations. The

entire cloth exhibits rubber-like dynamics, and the collision is highly

inelastic. This comparison is available in the supplementary video.

8.4 Comparison with existing methods

PD is a popular framework, based on which many excellent cloth

and deformable simulation algorithms have been developed. In this

subsection, we compare our method with several representative

PD-based cloth simulation methods, including PD-IPC [Lan et al.

2022b], PD-BFGS [Li et al. 2023], and PD-Coulomb [Ly et al. 2020].

Our method vs. PD-IPC. PD-IPC [Lan et al. 2022b] is a full GPU

simulator. It also integrates PD with IPC for deformable and cloth

simulation. Unlike our method, PD-IPC uses DBB, and a full CCD

must be invoked every time the constraint set is to be updated. PD-

IPC solves the global step system only using A-Jacobi iterations

on the GPU. For stiff simulations, one must adopt a close-to-one

SOR weight to ensure A-Jacobi iterations do not diverge. This is

not an issue for us since the subspace solve removes dominant low-

frequency errors. As a result, our method outperforms PD-IPC by

a significant margin in general. Fig. 11 reports a deformable body

simulation result. In this example, we have 33 deformable animal

toys, 10 elastic ribbons, and over one million elements falling into a

glass tank. Some animal toys are five times stiffer than others. Such

heterogeneous materials/bodies are particularly challenging for PD-

IPC as the SOR weight of the A-Jacobi must be set conservatively

(𝜔 ≥ 0.85), which impairs the convergence. In this example, our

method is 12× faster. As NDB does not depend on the distance,

updating NDB can be processed using partial CCD. This strategy

significantly speeds up the evaluation of barrier weighting and

reduces more than 60% of computation time.

Our method vs PD-BFGS. Another relevant competitor is from a

recent contribution by Li et al. [2023] or PD-BFGS. PD-BFGS de-

signs a two-step global solve combining Jacobi iteration with BFGS
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Table 1. Experiment statistics. We report detailed time statistics for experiments mentioned in the paper. # B gives the total number of objects in the

scene. # DOF is the total number of simulation DOFs. # Ele. records the total number of elements (i.e., triangles and tetrahedrons). # Con. and # Col. are
average numbers of elasticity constraints and collision constraints during the simulation. In the column of # Col., the first quantity reports the number of

collision constraints involved in CCD and the second number is the total number of primitive pairs after the broad phase collision detection. 𝒓 |𝒓 represent the

subspace size and reused subspace size. 𝚫𝒕 is the time step size. Pre. is the pre-computation time (measured in seconds). The column B|N|P|F gives the timing

information (in milliseconds) used for collision detection. Specifically, B is the broad phase time, and N is the narrow phase time. The narrow phase also

includes partial CCD (P) and full CCD (F) procedures. 𝜌𝑚 gives the mass density of the cloth (and the deformable objects e.g., in Figs. 11 and 17). The unit is
𝑘𝑔

𝑚2 for the cloth (and
𝑘𝑔

𝑚3 for deformable objects). 𝜅 (in𝑀𝑃𝑎) gives the stretching and bending stiffness of the cloth (and Young’s modulus of deformable

objects). ‖Δ𝑥 ‖ is the convergence condition. LG (#) gives the total time (first row) used and total number of LG iterations (second row) on average for each

step.Misc. corresponds to other additional computations. Except for Pre., other timings are measured in milliseconds. FPS is the overall FPS of the simulation.

Scene # B # DOF # Ele # Con. # Col. 𝒓 |𝒓 𝚫𝒕 Pre. B|N|P|F 𝜌𝑚 𝜅 ‖Δ𝑥 ‖ LG (#) Misc. FPS
Twisting cloth

(Fig. 8)
1 121K 80K 161K 110K

8M 120 |30 1
150 6.3 8 |15 |2 |13 0.3

160
3 · 10−4 1 · 10−3 47.4

(157) 10.2 12.4

“Animal cross.”
(Fig. 11)

44 678K 1.1M 1.1M 67K
9.2M 120 |30 1

150 46.8 20 |10 |0.4 |10 0.9 2 · 103 1 · 10−3 103.2
(47) 9.2 7.0

Make a knot
(Fig. 12)

1 310K 203K 410K 13K
4M 120 |30 1

150 13.6 8 |7 |0.2 |7 0.3
160

3 · 10−4 1 · 10−3 63.6
(74) 6.1 11.8

Drape one a sphere
(Fig. 13)

2 120K 80K 160K 7K
3M 120 |30 1

200 6.2 4 |4 |0.2 |4 0.3
100

2 · 10−4 1 · 10−3 30.8
(38) 1.2 25.0

Stack on teapot
(Fig. 14)

11 500K 338K 677K 28K
7M 120 |30 1

150 24.1 8.4 |9.1 |0.3 |8.8 0.3
160

3 · 10−4 1 · 10−3 35.9
(31) 6.6 16.6

Just folding
(Fig. 15)

5 485K 320K 498K 23K
7M 120 |30 1

150 7.6 5 |7.5 |0.5 |7 0.3
160

5 · 10−4 5 · 10−4 64.4
(46) 3.6 12.4

Cloth blender
(Fig. 16)

8 820K 540K 992K 160K
26M 120 |30 1

150 25.4 10 |11.6 |2.6 |9 0.3
160

3 · 10−4 5 · 10−4 160.7
(73) 10.2 5.2

Cover the ship
(Fig. 17)

5 930K 941K 1.2M 63K
9.2M 120 |30 1

150 31.8 8 |8.3 |1.2 |7.1 0.8 |0.9 160 |8 · 103
2 · 10−4 5 · 10−4 117.8

(51) 5.3 7.2

Funnel
(Fig. 18)

6 692K 458K 923K 276K
32M 120 |30 1

150 32.8 17 |13 |2 |9 0.3
160

3 · 10−4 5 · 10−4 112.4
(52) 8.5 6.6

Kicking
(Fig. 19)

2 450K 294K 525K 47K
4M 120 |30 1

200 11.6 14 |11 |0.6 |10 0.3
200

3 · 10−4 3 · 10−4 113.5
(94) 8.5 6.8

Fashion show
(Fig. 1)

2 1.1M 656K 996K 84K
10M 120 |30 1

200 28.4 14 |14.7 |1.6 |13.1 0.3
160

3 · 10−4 5 · 10−4 167.3
(67) 12.4 4.8

Fig. 12. Make a knot. Two cloth strips are pulled from opposite directions

to form a tight knot. Both our method and PD-BFGS [Li et al. 2023] success-

fully handle this challenging simulation. Nevertheless, our method is 130×
faster due to sample-based partial CCD with exponential NDB re-weighting

strategy, and a more efficient subspace reuse strategy on global solve. In

this experiment, there are 104K vertices and 203K triangles on the mesh.

method in a spline-based subspace. PD-BFGS is also based on DBB,

and thus slower than our method for IPC-based collision process-

ing. At the global stage, PD-BFGS employs a reduced quasi-Newton

procedure in a B-spline subspace. This subspace is of high dimen-

sion i.e., 𝑟 ≈ 10, 000. As a result, PD-BFGS is much slower than the

pre-computed subspace update used in our simulation. A concrete

experiment is reported in Fig. 12, where we pull two intertwining

cloth strips to make a tight knot. There are 104K vertices on the

strips. Our method handles this example at an interactive rate of

11.8 FPS, while PD-BFGS needs seconds for each frame.

Our method

PD-Coulomb

Fig. 13. Drape on a sphere. A tablecloth of 40K vertices drapes on the

sphere. We compare our method with PD-Coulomb [Ly et al. 2020]. PD-

Coulomb models Coulomb friction, while our method uses a lagged friction

Hessian at each LG iteration as in [Li et al. 2023].

Our method vs PD-Coulomb. Our method is compatible with vari-

ous friction models. In our implementation, we follow the strategy

used in [Li et al. 2023], which leverages a quadratic barrier proxy

to estimate the Hessian of the friction energy to simulate frictional

surfaces with different friction coefficients – in a way similar to

the original IPC. Alternatively, Ly et al. [2020] (PD-Coulomb) show

that it is possible to incorporate full Coulomb friction by a novel

splitting strategy so that the global matrix is kept constant. To this
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Bottom view

Fig. 14. Stack on the teapot. We stack ten pieces of tablecloth on the

teapot simultaneously. The free fall of stacking clothes generates a large

number of intertwining cloth-cloth collisions. EXP and partial CCD robustly

handle this challenging scene and produce high-quality animation.

Fig. 15. Just folding. In this example, four clothes fall vertically on the desk

one by one with different orientations. The contact between the cloth and

the desktop folds the cloth with complex self-collisions. This is a good stress

test because the velocity of falling cloth is high. The resulting multi-layer

self-collisions are particularly challenging. There are nearly 500K DOFs

involved, and the simulation runs at 12 FPS.

end, we show a side-by-side comparison between our method and

PD-Coulomb [Ly et al. 2020].

In this experiment, we drape a piece of square cloth of 40K vertices

on a sphere. The size of the cloth is 1𝑚×1𝑚, and the time step is Δ𝑡 =
1/200 sec. It can be seen from Fig. 13 (and also see the supplementary

video) that both methods capture the frictional contact between

the cloth and the sphere and produce similar animation results.

In fact, the splitting method proposed in [Ly et al. 2020] can also

be integrated with our pipeline. PD-Coulomb adopts DCD, and

we follow the default setting as in the published code of [Ly et al.

2020]. The collision tolerance is set as 1𝑚𝑚. This means as long

as the distance between two triangles is smaller than 1𝑚𝑚, DCD

will generate a contact. While this is a conservative configuration,

considering the movement of the cloth is moderate, one can still spot

minor inter-penetration among the cloth triangles. On the other

hand, our method uses CCD and a line search filtering at the end of

each step, which guarantees all the triangles are separate.

It should be mentioned that PD-Coulomb is CPU-based, using

OpenMP to speed up pre-factorized global solve, while our method

is fully GPU-based. As a result, our method runs faster (at 25 FPS)

than PD-Coulomb by 30 times. Such performance difference largely

comes from the hardware platform. Nevertheless, our method is

orthogonal to PD-Coulomb as we do not focus on friction modeling

but more on solver optimization and collision detection.

8.5 More experiments

We have tested our method in a wide range of simulation scenes.

The detailed time statistics of all the experiments shown in the paper

are reported in Tab. 1. Figs. 14, 15, and 16 show three tests with

massive collisions. In Fig. 14, we test the robustness of our method

under extensive stacking. In this test, ten falling tablecloths hang on

the teapot. This simulation generates a lot of overlapping collisions

when clothes stack under gravity. Fig. 15 reports another test where

we fold four clothes by vertically dropping them on the desk. As the

cloth makes contact with the desktop, it folds in a zig-zag pattern,

resulting in a large number of self-collisions, particularly edge-

edge collisions. This experiment is a good stress test showing the

robustness of a cloth simulator. Fig. 16 mimics a washer with six

clothes in a bowl-shaped container. The scene also involves a large

number of dynamic collisions. Our method produces interesting

animations in all of those experiments, and the results are free of

any inter-penetration.

Our method is also capable of simulating deformable objects.

In addition to the example reported in Fig. 11, we give another

experiment with two-way coupling between cloth and deformable

body under complex collisions. As shown in Fig. 17, a heavy cloth

falls onto a barbarian ship. The ship base is fixed, and it has soft

masts and ladders. As the cloth falls down, we can see detailed

wrinkles at the contacting area between the cloth and the ship.

There are 540K DOFs on the cloth and 390K DOFs on the ship. Our

method generates interesting animation results at 7.2 FPS.

Fig. 18 shows two more simulations under different frictional se-

tups. Three pieces of cloth cover a funnel, and we place a rigid/heavy

ball on the funnel. We use affine body dynamics [Lan et al. 2022a]

to simulate the ball’s motion. There are nearly 700K DOFs in this

scene, and our method produces plausible dynamics under different

friction settings. The simulation runs at 6.6 FPS. As discussed, we
can switch to a more accurate frictional model either as in [Ly et al.

2020], which is based on complementarity programming or as in [Li

et al. 2020], which is based on the interior-point method.

Cloth animations play a pivotal role in the realm of digital fashion

and design. The proposed method enhances this aspect by enabling

virtual characters to interact seamlessly with a variety of garments,

yielding high-quality simulations. As a demonstration of its capabili-

ties, we report two additional examples. The first features a character

executing a kicking action, illustrating the dynamic interaction be-

tween the motion and the garment (Fig. 19). This is a numerically

challenging test as the body undergoes swift movements. Most DCD-

based methods are unable to capture such high-velocity garment

dynamics. The second example showcases a virtual model on a fash-

ion runway as shown in Fig. 1. This model, attired in a knee-length

skirt, walks to the front of the stage before turning around to return.

Throughout this sequence, our method meticulously captures the

intricacies of the motion. Please refer to the supplementary for the

animated results, where we report two sequences of animations

9 CONCLUSION & LIMITATION

This paper presents a parallelizable cloth simulation framework,

that delivers high-quality animation results, keeps computations

lightweight, and separates all the triangles on the cloth models.

To the best of our knowledge, such combined efficiency, quality,

and performance are not possible with existing cloth animation

algorithms. To achieve this goal, we employ a non-distance barrier,
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Fig. 16. Cloth blender.We drop six clothes into a bowl-like container. The blender rotates and stirs all the clothes. This example generates fast rotational

collisions between clothes and the collider, as well as a large number of cloth-cloth collisions. The simulation has 820K DOFs and runs at about 5 FPS.

Backview

Fig. 17. Cover the ship.We cover a deformable barbarian ship with a piece of heavy cloth (𝜌𝑚 = 0.8𝑘𝑔/𝑚2). The soft masts and ladders on the ship bend

under the weight of the cloth cover. The ship-cloth contacts generate fine wrinkles that delineate the shape features of the ship. There are 540K DOFs on the

cloth and 390K DOFs on the barbarian ship. With Δ𝑡 = 1/150, our method resolves all the cloth-cloth, cloth-ship, and ship-ship collisions and runs at 7.2 FPS.

High friction

Low friction

Fig. 18. Funnel. We place a rigid and heavy ball (with affine body dynam-

ics [Lan et al. 2022a]) on a funnel covered by three layers of cloth. The cloths

hold the sphere under high frictional contacts (top). When the friction is

not strong enough, all the cloths eventually fall on the ground (bottom). The

simulation involves nearly 700K DOFs, and our method runs at 6.6 FPS.

which is both simple and effective. This new barrier model allows

the simulation to skip the computation of the distance between

primitive pairs, and the weight of each collision constraint becomes

self-adjusting during LG iterations given the current active set. The

subspace reuse scheme significantly pushes the performance of the

solver with minimum costs. By observing the fact that the low-

frequency subspace is less sensitive to high-frequency collisional

deformations, we reuse the rest-shape modal global matrix to solve

global cloth deformation. The subspace matrix update is also ef-

ficient and can be pre-computed. The residual forwarding helps

mitigate the dumpling artifacts due to small-TOI line searches. We

show that this approach yields visually plausible animations with

the penetration-free guarantee and makes the simulation efficient

for high-resolution scenes.

Table 2. More statistics on parameters.We report total LG iterations and

time cost (in ms) using different simulation parameters. Detailed results

(including artifacts and simulation failure cases) are presented in the sup-

plementary videos.

Cloth folding
Δ𝑡 (s) ‖Δ𝑥 ‖ = 1 · 10−4 ‖Δ𝑥 ‖ = 5 · 10−4 ‖Δ𝑥 ‖ = 1 · 10−3 ‖Δ𝑥 ‖ = 1 · 10−2
1/150 39(16.3ms) 18(8.3ms) 15(6.9ms) Jittery 4(2.8ms) Jittery
1/100 55(24.7ms) 26(13.5ms) 20(11.1ms) Jittery Fail
1/50 95(56.4ms) 45(26.6ms) 40(20.9ms) Jittery Fail

Cloth twisting
Δ𝑡 (s) ‖Δ𝑥 ‖ = 1 · 10−4 ‖Δ𝑥 ‖ = 5 · 10−4 ‖Δ𝑥 ‖ = 1 · 10−3 ‖Δ𝑥 ‖ = 1 · 10−2
1/150 214(64.8ms) 171(52.2ms) 157(47.4ms) 72(21.6ms)
1/100 229(69.7ms) 182(56.1ms) 163(49.4ms) Fail
1/50 255(77.3ms) 202(61.1ms) 171(51.9ms) Fail

Our method has some limitations. First, our method is based

on projective dynamics. Therefore, the elasticity model (Ψ) should
be shaped in a quadratic form. This prevents us from incorporat-

ing more complex fabric models in the simulation e.g., homoge-

nized [Sperl et al. 2020] or data-driven models [Feng et al. 2022].

However, we believe it is possible to combine our subspace reuse

strategy with block descent methods [Lan et al. 2023] for general

materials. Residual forwarding trick becomes less effective if the

residual errors are too large and may cause simulation failure: in

some situations, RF can introduce unnatural bumpy artifacts, which

may be evenmore visually disturbing (see Tab. 2, two columns on the

right, Fig. 20 and supplementary videos). While our method adapts

to various simulation parameters, it is more sensitive to timestep

size and termination criteria compared to the projection-Newton.
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Fig. 19. Kicking. In this example, the virtual character quickly performs a kicking action, which leads to nonlinear animation effects on the multi-layer skirt.

Our method produces high-quality results. The frame rate reaches 6.8 FPS, which is two-order faster than the state-of-the-art GPU simulation [Li et al. 2023].

Fig. 20. Folding and twisting. As a non-Newton method, the performance

of our method is correlated with time step size and termination criteria. RF

may introduce unnatural jittery artifacts and may cause simulation failure

when the residual error is too large. The animated results are available on

supplementary video.
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