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ABSTRACT

In this paper, a semi-analytical surface tension model is proposed for
smoothed particle hydrodynamics (SPH). Different from previous
approaches, cohesive and adhesive forces in our model are unified
within a surface energy framework for nonuniform systems. To
calculate the adhesive force, we use a semi-analytical solution to
convert the volume integral into a surface integral, triangular meshes
which represent solid boundaries can be directly introduced into
liquid-solid interactions. A gradient descent algorithm is employed
to optimize the objective function, which represents the total energy
of the fluid. Experiments show that our model can efficiently handle
complex solid boundaries with surface-tension-driven phenomena.

Index Terms: Computing methodologies—Computer Graphics—
Animation—Physical simulation

1 INTRODUCTION

Various microscopic and macroscopic approaches have been pro-
posed to model surface tension. Since the energy-based surface
tension model [6] in SPH framework is more robust at simulat-
ing thin features in free surface flows, we extend it to handle both
liquid–air and liquid-solid boundaries in a unified way.

To model adhesion between liquid and solid, a straightforward
solution is to sample the solid with ghost particles and explicitly
model the interaction between liquid and solid as pairwise particle
forces [1]. Nevertheless, the particle sampling strategy is neither
flexible nor efficient for complex solid boundaries, such as those
including corners and shells. Inspired by Chang et al. [3]’s work,
we propose a semi-analytical surface tension model to handle liquid-
solid interactions. The basic idea is to treat the boundary region
as a uniform system.we assume that there is a transitional zone
between liquid and solid, where the surface energy is defined as a
spatial variation of composition densities. With such an assumption,
both cohesion and adhesion can be uniquely derived from a squared
gradient energy term. We use triangular meshes to represent solid
boundaries, and convert the volume integral over the solid boundary
into surface integral on the boundary to calculate the adhesion.

To summarize, our contributions in this paper are:

• An extension of the Helmholtz free energy functional to uni-
formly model cohesion and adhesion forces at liquid–solid
interfaces.

• A semi-analytical solution to calculate the liquid adhesion to
the solid boundary, which does not require to sample the solid
with ghost particles any more.

This section will give a brief introduction to our semi-analytical
surface tension model.

1.1 Semi-analytical Boundary Conditions
Among all boundary handling techniques, ghost particles are most
commonly used [7]. Sampling solid boundaries with ghost particles
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Figure 1: Teardrops. Two particle emitters are used to generate tears,
which are then rolling down the cheeks. Our algorithm runs in real-
time an FPS range between 20∼ 60. Due to the physical interaction,
no wet map is required to capture the tear trace.

helps maintain the meshfree nature in SPH, however, it is still not
an elegant way to deal with large planar regions or deformable
boundaries. Instead, semi-analytical methods have been proven to
be more efficient at handling large-scale and dynamic boundaries [3].
The basic idea of the semi-analytical solution is to convert a volume
integral over the solid into a surface integral over the solid boundary.
According to Chang et al. [3], the boundary integral for an arbitrary
radial basis function can be formulated as

f B(x) =
∫
B

g
(
x,x′

)
dV

=
∫

Ωs
G(h)dΩ−

∫
Ωk

G(r (θ ,ϕ))dΩ

, (1)

where B represents the integral domain inside the boundary, Ωs is
the solid boundary, Ωk is the support domain boundary inside the
solid, r = ‖x−x′‖, g(x,x′) represents a radial basis function, i.e.,
g(x,x′) = g(r), G(r) represents a single variable function satisfying
G′(r) = g(r)r2, and dΩ = sinθdθdϕ represents an expression for
the differential in spherical coordinates.

2 SEMI-ANALYTICAL SURFACE TENSION MODEL

Note that if G(r) satisfies G(h) = 0, the integral in Eq. 1 has a
simpler form defined as follows

f B(x) =−
∫

Ωk
G(r (θ ,ϕ))dΩ . (2)

The advantage of applying Eq. 2 to take the boundary integral is it
removes the necessity to sample solid boundary with ghost particles
and a simple surface mesh can be integrated to handle fluid-solid
interactions.

2.1 Numerical Discretization
From a mesoscopic view, surface tension forces arise from regions
with nonuniform composition [2]. It has been shown that the free



(a) κ f = 0.01,κs = 0.075 (b) κ f = 0.04,κs = 0.05 (c) κ f = 0.05,κs = 0.025 (d) κ f = 0.06,κs = 0.01

Figure 2: Comparison of contact angles with different surface energy coefficients. By adjusting the value of κ f and κs, our method allows
simulating different wetting effects. The average simulation time per frame is 16ms.

energy of a volume V for an isotropic system of nonuniform compo-
sition is formulated as

E =
∫
F

[
f (c)+

κ

2
‖∇c‖2

]
dV , (3)

where F represents the integral domain, c is the composite density ,
κ f is the surface energy coefficient, f (c) is the bulk energy per unit
volume of a homogeneous system, and the squared gradient energy
term represents the surface energy per unit volume.

Let us consider the area inside the particle’s supporting area
containing three different materials, i.e., solid, liquid and air. By
assuming the air makes no contribution, the surface energy for a
three-phase region can be formulated as

S =
∫
F

κ f

2
‖∇c f ‖2dV +

∫
B

κs

2
‖∇cb‖2dV, (4)

where the superscripts f and s represent the surface energy coeffi-
cients of the fluid and solid, respectively. To calculate surface forces
imposed on a particle i, the first term of Eq. 4 can be calculated
by discretizing ∇ic f according to [6], the difficulty lies in how to
calculate the surface energy of the solid. Since SPH suffers from
the particle deficiency problem, we prefer to apply the corrective
smoothed particle method [4] to calculate ∇ics as follows

∇ics =

∫
B cs

j∇i jWdV∫
B

(
xi−x j

)
∇i jWdV

. (5)

Note cs
i has been omitted since its value is zero outside of the

solid boundary. By invoking the divergence theorem and the semi-
analytical method in Chang et al. [3], the formulation of ∇ jcs can
be converted into a surface integral defined as

∇ics =−
∫

∂B cs
jWi jdS∫

Ω
W̃i jdΩ

. (6)

where dS is a shorthand for ndS, W̃ is a weighting function satisfying
W̃ ′ = r3 ∂W

∂ r . Since Equation 6 involves surface integral only, a
triangular mesh representing the solid boundary can be incorporated
to facilitate the calculation. Therefore, the discrete form of Eq. 6
becomes

∇ics =−
∑ j A jcs

jn jWi j
(∥∥x j−xi

∥∥)
∑ j Ω jW̃i j

(∥∥x j−xi
∥∥) , (7)

where A j represents the area of triangle j, n j represents the boundary
normal, x j represents the closest sampling point of triangle j to xi,
Ω j represents the solid angle of triangle j with respect to xi [3].
Motivated by He et al. [5], the fluid dynamics equipped with surface
tension and adhesion can be addressed by solving the following
objective function

Ei =
1
2

∥∥xi−x∗i
∥∥2

d2
0

+ f
(

c f
i

)
+

κ f

2

∥∥∥∇ic f
∥∥∥2

+
κs

2
‖∇ics‖2 , (8)

where d0 denotes the particle sampling distance.Since the total en-
ergy is a function of the particle position xi, we can therefore shift
their positions to solve the optimization problem iteratively.

3 RESULTS

We implemented our method with CUDA and run all examples on
an NVIDIA graphics card (Geforce RTX2080). To simulate the
teardrop in Fig. 1, we place two emitters to produce fluid particles.
A total of 67312 triangles and 5070 particles are used to model
the simulation. As fluid particles flow down the cheeks, they can
interact with the triangular mesh. Note the tear traces resulted from
the physical interaction between the tears and the face. Since the
performance is not fully optimized, this simulations now runs at an
FPS range between 20∼ 60. In Fig. 2, a fluid droplet consisting of
2196 particles is simulated to model different wetting conditions.

4 CONCLUSION

In this study, the energy-based surface tension model was extended
to handle liquid-solid interactions, and both cohesion and adhesion
forces can be addressed in a unique form.Unlike previous methods,
our method does not require us to sample the solid phase and a
triangular mesh can be integrated to facilitate calculating surface
tension and adhesion.
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