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Abstract

Signed distance fields (SDFs) are commonly used in
solid modeling and physically based animation. How-
ever, how to develop high-performance sparse data
structures for signed distance field construction and
boolean operations is challenging. Our motivation is
to develop a representation for adaptive signed distance
fields that allows fast construction and boolean opera-
tions between any two SDFs, named as the algebraic
adaptive signed distance field (AASDF). To guarantee
all AASDFs form an algebraic system, a novel hierar-
chical sparse octree is first presented. A bottom-up
fast iterative method is then proposed to calculate the
signed distance field based on the hierarchical sparse
octree. Boolean operations of union, intersection and
difference can also be taken with a similar hierarchical
construction algorithm to obtain an adaptive signed dis-
tance field belonging to the complete set of AASDFs. Ex-
periments show that our method not only shows perfor-
mance comparable to state-of-the-art methods in con-
structing adaptive SDFs on GPU, but also can handle
boolean operations between different models at an in-
teractive speed.

Keywords: algebraic adaptive signed distance field
(AASDF), boolean operations, GPU acceleration

1. Introduction

A boolean operation, such as union, intersection, or dif-
ference, is one of the most important geometric tools in
solid modeling and computational geometry. Since most
geometric models are represented with surface meshes, a
vast amount of work have been done to do boolean op-

erations directly on surface meshes [21]. However, direct
boolean operations on surface meshes have been proven to
be a notoriously difficult job [37]. As an alternative solid
modeling technique, signed distance fields (SDFs) has been
commonly used to represent implicit geometric models for
surface reconstruction [13], ray tracing [2] and collision de-
tection [22], etc. Boolean operations taken on two SDFs
that are approximated with a regular grid have the advan-
tages of fast calculating speed and easiness in implemen-
tation. However, compared to the boundary representation
using surface meshes, the volumetric representation using
SDF typically requires to take a higher magnitude of stor-
age space.

To save the memory cost, an vast amount of works have
been proposed in recent years to provide sparse represen-
tations for the SDF, among which the most popular ap-
proaches are either based on octree [36] or N-tree [23]. The
core idea of existing commonly used adaptive SDF con-
struction algorithms are to create sampling points based on
quadtrees or octrees, and then query the shortest distance
to the meshes of model. To accelerate this process, various
spatial structures are employed, including the rectangular
grid, octree and bounding volume hierarchy (BVH) [32].
That is to say, state-of-the-art methods have already been
able to construct adaptive SDFs at an interactive speed on
GPU[20]. However, the dependence on the surface mesh
makes the boolean operations of two adaptive SDFs rather
difficult.

In this work, we propose algebraic adaptive signed dis-
tance field for GPU, enabling both parallel construction of
adaptive SDFs and boolean operations. To form an alge-
braic system, a novel hierarchical sparse octree is first pre-
sented to facilitate the definition of AASDF. A bottom-up
fast iterative method is then proposed to construct nodes
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level by level as well as to update signed distance values
across different levels. In constructing nodes at each level,
we require to only generate nodes that are close to the do-
main boundary to satisfy the adaptivity requirement. Be-
sides, we propose to generate two kinds of nodes for the hi-
erarchical sparse octree, i.e., the internal nodes containing
just 8 children and the leaf nodes that contain no children,
therefore the completeness of boolean operations can be en-
sured. Finally, to maximally exploit GPU parallelism, we
propose to refine the hierarchical sparse octree by embed-
ding a uniform grid at the top-most level, thus the perfor-
mance of all operations in the algebraic system of AASDFs
including both the construction and boolean operations can
be significantly improved.

In summary, the contributions of our work include:

• A hierarchical sparse octree that can be used to con-
struct an algebraic system of AASDFs.

• A bottom-up fast iterative method to construct each el-
ement of AASDFs in parallel on GPU.

• A bottom-up algorithm to do boolean operations be-
tween two AASDFs in parallel on GPU.

2. Related Work

Considering that SDF has so wide range of applications,
it is no surprise that there are plenty of works on algorithms
of SDF which are difficult to cover fully here. The Fast
Marching Method (FMM) [33], the Fast Sweeping Method
(FSM) [44] and the Fast Iterative Method (FIM) [15] are
extensively used numerical methods for solving the signed
distance function as a special case of Eikonal equation.
FMM is a label-setting method and resembles Dijkstra’s
method [6] designed to find the shortest path on graphs.
It simulates a wavefront advancing from the boundary and
updates a set of points in narrow band around wavefront,
based on upwind difference schemes. The ordered data
structure, for example a min-heap data structure or a sim-
ple priority queue [16], is used to manage the narrow band
that is the most important aspect of the implementation of
FMM. FMM has a time complexity of O(n log n), where n
is the number of grid points. [42] presents a parallel imple-
mentation of FMM with a novel restarted narrow band ap-
proach based on the domain decomposition approach. FSM
is a label-correcting method and has a time complexity of
O(n). This algorithm successively sweep the the whole
grid following a pre-defined number of directions. Typi-
cally, forwards and backwards of the x and y dimensions
in 2D (corresponding 8 directions in 3D) are used. [46]
presents a domain decomposition based parallel algorithms
of FSM. [5] sweeps though the domain in parallel with the
Cuthill–McKee ordering. [4] presents the hybrid massively
parallel fast sweeping method that uses distributed memory

method on a coarse grained and shared memory method on
a fine grained. [35] proposes the multi-level parallel do-
main decomposition strategy that uses the Cuthill–McKee
ordering for both the coarse and fine grained. FIM is a
label-correcting method that is inspired by FMM. The main
idea of FIM is to update the points in narrow band affected
by the wavefront without maintaining expensive data struc-
tures. It has a higher parallel potential because the points in
narrow band are updated concurrently until they converge.
The computational complexity of FIM is O(n). [3] pro-
poses multilevel parallel approach for FIM. [9] proposes
lock free parallel implementation of FIM and group ordered
FIM where the solution of the coarse level grid determines
the updating order. [12] introduces improved FIM with
modifications for updating values and for error correction.

In addition to the general algorithms for the Eikonal
equation, there are some works on generating SDF on GPU
or adaptive SDF. [26] introduces a preliminary attempt of
cuda-based adaptive sdf. The adaptive grid topology is im-
plemented on CPU. And then the distance to each triangu-
lar mesh is calculated on GPU. [43] uses the intersecting
triangle lists of voxel to compute the distance on GPU, the
construction of its octree data structure requires the explicit
construction of the dense uniform grids. [20] proposes the
hierarchial method to speed up the computation of distance,
the topology based on octree is built in the up-bottom way,
then a set of bounding volume hierarchy (multi-BVH) struc-
ture is employed to accelerate the distance queries of the
adaptive sampling grids. [19] uses the DT algorithm [7]
to compute the unsigned distance field on uniform grids on
GPU, then a ray map is used to compute the winding num-
ber of points to determine the sign. [41] proposes a double
layer algorithm to compute the approximate SDF from tri-
angles. [18] uses polynomial degree of hexahedral grid (p)
together with octree subdivision (h) to construct more accu-
rate spatial topology.

The dense uniform grid is fast to construct and access,
and have advantages in numerical discretization of differ-
ential operators, interpolation and other such algorithms.
But the shortcomings are also obvious, the memory foot-
print of uniform grid increases rapidly with the expansion
of the domain of interest, and even suffers memory bottle-
necks. In addition the uniform nature dictates computing
resources to be distributed uniform rather than concentrated
in key region (e.g. boundary of models) [28]. To exploit the
spatially sparse in 3D, multiple works have presented gen-
eralized sparse volumetric data structures. [23] introduces
OpenVDB, a sparse volumetric data structure, that builds
on a shallow tree with a high branching factor. OpenVDB
is a standard for sparse volumes in the movie industry. [8]
presents a GPU voxel database structure based on Open-
VDB, which is a sparse hierarchy of grids for efficient GPU-
based computation. [24] introduces NanoVDB, a mini ver-



sion of OpenVDB, which is applicable to both CPU and
GPU but only for static topology structures. [10] proposes
Taichi, a data-oriented programming language to effciently
anthor and manage the sparse data structures.

Boolean operations on geometric objects have been of
great interest and have given rise to many related works.
[1, 17] demonstrate the exact algorithm for boolean opera-
tions directly on surface meshes. [39, 47, 38] present the ap-
proximate boolean operations of geometric objects with the
help of Layered Depth Images(LDI). [25] performs boolean
operations on uniform grids.

3. Background

In this section, we will present the basic theory that is
required to derive the algebraic system of adaptive SDFs.

3.1. Eikonal equation

Given ∂Ω as the boundary of the a closed domain Ω,
the signed distance field φ(x) defined on the whole metric
space X is written as

φ (x) =

{
d (x, ∂Ω) if x ∈ Ω

−d (x, ∂Ω) if x ∈ X\Ω
, (1)

where d represents the distance to the boundary. If the
boundary is smooth, the gradient of φ (x) satisfies the fol-
lowing Eikonal equation[40]

|∇φ(x)| = 1 (2)

where ∇ is the gradient operation and | · | is the Euclidean
norm. Intuitively speaking, the Eikonal equation can be
viewed as a wavefront propagating from the boundary ∂Ω
outside in the direction of ∇φ(x). The absolute value of
φ(x) then represents the arrival time of the wavefront to the
point x.

Based on the above observation, three numerical meth-
ods are commonly used to solve the Eikonal equation, in-
cluding the fast marching method (FMM) [34], the fast
sweep method (FSM) [45] and the fast iterative method
(FIM) [14]. Since the purpose of this work is to develop a
GPU-friend, highly parallel algorithm to solve the Eikonal
equation, we will propose a new method based on the fast
iterative method that can work well on adaptive grids.

3.2. Fast iterative method

To make our paper self-contained, we present a brief
overview of the standard FIM. The basic idea of FIM is to
propagate values from a narrow band near the boundary to
far regions. It can be summarized into the following two
steps

• In the initialization step, FIM first initializes values
for grid points that are located near the boundary and

labels them as source points. The neighbors of the
source points are added to the active list.

• In the update step, FIM updates the values of points
in the active list from their neighboring source points.
Once the value of an active point converges to a thresh-
old, it will be added to the source points. All its neigh-
boring points whose value is not converged will be
added into the active list. This process will continue
until there are no points in the active list any more.

Note both the initialization and update steps in FIM can
be done in parallel. Besides, no complex data structures are
required to store intermediate variables. As a result, if we
use a uniform grid to store signed distance field, the FIM
can be easily implemented on GPU. The difficulty lies in if
we would like to exploit the sparsity of the signed distance
field, how can we retain the good features in FIM?

4. Algebraic Adaptive Signed Distance Field

Study of parallel construction of adaptive SDFs on GPU
is not new in computer graphics. For example, Liu et
al. [20] has proposed a multi-BVH structure to accelerate
building an exact adaptive distance field. However, none
of those methods support efficient boolean operations. To
form an algebraic system, the following requirements are
imposed on each adaptive SDF within this study:

• Adaptivity. The signed distance field maintains a
sparse data structure that can dynamically refine the
grid resolution to the regions of interest. In other
words, the refinement criterion should maintain ade-
quate resolution of grid to resolve thin boundary fea-
tures. For regions deep inside the volume, coarser
grids are required to save the total memory cost.

• Completeness. Boolean operation between any two
SDFs produces a new SDF that maintains a sparse data
structure fulfilling the adaptivity requirement.

• Parallelizable. All steps in the construction of SDFs
and boolean operations have a high degree of paral-
lelization.

To fulfill above requirements, we develop a hierarchical
sparse octree to store the signed distance field, as demon-
strated in Fig. 1. Compared to a standard hierarchical oc-
tree, the main features of the hierarchical sparse octree used
here include:

1. Each hierarchical sparse octree shares the same ori-
gin of the Cartesian coordinate system Co. During the
construction of an AASDF, Co would be used to align
the boundary of the domain of interest as follows:

xo ← xo − frac
(
xo −Co

δx

)
(3)



Figure 1: Schematic illustration of the hierarchical sparse
octree used to construct AASDFs. It contains two kinds of
node, including the internal node that has just 8 children and
the leaf node.

where xo is the origin of the domain of interest, δx
is the grid spacing of the top-most level, frac(·) is a
function used to calculate the fraction of the floating-
point number. As discussed later in Sec. 5, alignment
with Cartesian coordinate system facilitates boolean
operations between two AASDFs.

2. At each level, the sparsity of the hierarchical octree
is maintained by only creating nodes that are located
near the boundary. Besides, Fig. 1 shows that the hier-
archical octree contains only two kinds of nodes, i.e.,
the internal node and the leaf node. The internal node
should contain just 8 children while the leaf node con-
tains no children.

3. To fully exploit the parallelism of GPU, the depth of
the hierarchical sparse octree is set to be adaptive as
well. If the depth is too large, both the construction of
the hierarchical sparse octree and node query can be-
come much less efficient. Therefore, in our current im-
plementation, only a small number of the most bottom
levels of nodes are constructed. Levels that are higher
than a user defined level number is simply combined
into a uniform grid, which is quite similar to the strat-
egy used in Taichi [11].

In the following context, we will demonstrate how to
construct an AASDF level by level.

4.1. Construction

As shown in the Fig. 2, the whole construction pipeline
can be divided into three stages: First, leaf nodes in the
finest level of grid is constructed. Then, internal and leaf
nodes in the intermediate levels are constructed. Finally,
internal and leaf nodes in the top-most level of grid are con-
structed. To facilitate the construction, we define a structure
that contains the following properties for each node:

• l: level number of the node, assuming the root node is
at depth 0.

• m: morton code representing the node index in mem-
ory using a Z-order curve.

• φ: Signed distance value defined at the node center.

• c: position center of the node.

• p: the projection of the node center to the boundary.

• n: the boundary normal defined on p.

• Nc: indices of all children nodes.

• Ne: indices of all neighboring nodes.

4.1.1 Constructing nodes in the finest level

Without loss of generality, we assume boundary of the
domain of interest is represented with a closed triangular
mesh. By choosing an appropriate grid spacing ∆x for
the finest level, the objective in this stage is to construct
nodes for grids that have overlap with any of the axis-
aligned bounding box (AABB) of the boundary triangles.
To identify all those grids, our idea is to first allocate one
GPU thread for each triangle to find overlapping grids with
the corresponding triangle independently. Given a triangle
whose AABB is denoted as [x1,x2], the index of the over-
lapping grids can be trivially calculated according to the fol-
lowing formula:

F (x1) = f(
x1 − xo

∆x
), G(x2) = g(

x2 − xo

∆x
) (4)

with
f(x) = bxc − (bxc%2)

g(x) = dxe+ (dx+ 1e%2)
(5)

where b·c is the floor function, d·e the ceil function and % is
the modulus operator. Therefore, all grid cells with indices
in the region of F (x1) ×G(x2) are used to construct leaf
nodes. Note the functions in Eq. 5 are used to guarantee all
sibling nodes can also be created, thus their parent nodes
can just have 8 children. Given the identified grid cells, all
attributes required for a node can be easily calculated using
basic mathematics.

However, since each triangle is processed independently,
an additional step should be taken to remove duplicated
nodes. We remove all duplicates by first sorting all nodes
based on their Morton codes in parallel. For nodes having
the same Morton code, we only keep the one with the small-
est unsigned distance value. Since the distance calculating
in the finest level is exact, all leaf nodes will be labeled as
source points, and can later be used to initialize signed dis-
tance values for nodes in the next level.



Figure 2: A sample of AASDF construction in 2D. (a) Leaf nodes in the finest level. (b) Nodes in the intermediate level,
where the dark blue ones are the internal nodes, they are also the parents of (a), and the light blue ones are leaf nodes of that
level. (c) Nodes in the intermediate level like (b). (d) Nodes in the top-most level with the internal (dark blue) and leaf (light
blue) nodes. (e) The sparse topology of AASDF consisting of all leaf nodes.

Figure 3: Based on the current nodes with mor-
ton code {[∗0000], [∗0001], [∗0010], [∗0011]}, their par-
ent node and the sibling nodes of the parent node
{[∗00], [∗01], [∗10], [∗11]} are generated.

4.1.2 Constructing nodes in the intermediate levels

In contrast to a standard octree construction algorithm, the
intermediate levels in our work are constructed in a bottom-
up order level by level. Assuming we are currently con-
structing nodes for level l, our idea is to allocate one GPU
thread to each node in level l+1 to construct its parent node
Nl as well as all sibling nodes toNl. Given the Morton code
ml+1 for Nl+1, the morton code of its parent or the sibling
node of its parent can be uniformly calculated as:

ml = (ml+1 � 6)� 3 +ml+1&7 (6)

where � is the right shift operator, � is the left shift op-
erator and & is the bitwise AND operator. To facilitate un-
derstanding, Fig. 3 demonstrates a 2D case to show how
the parent nodes and their siblings are created (Note in 2D
space, Eq. 6 should be formulated as ml+1 = (ml �
4) � 2 + ml&3). Consider a node who has a Morton
code of m = [∗0000], its parent node with a Morton code
m = [∗00] will be generated. Otherwise, if the node with a
Morton code ofm = [∗0001] is considered, the sibling node
of the its parent who has a Morton code of m = [∗01] will
be generated. However, nodes generated this way can still

be duplicative, we therefore should take an additional step
to remove duplicates, just as the one taken in constructing
the finest level.

The question is how to calculate other properties for the
newly created nodes, such as the node center c, signed dis-
tance value φ, etc. Our idea is to first initialize node proper-
ties for internal nodes by calculating all required node prop-
erties from their children. For example, the value of φl can
be calculated by taking the minimum of distances measured
from the node center cl to the projection point pl+1 stored
in the child nodes. Note the calculated signed distance val-
ues are exact, therefore, all newly created internal nodes
will be labeled as the source points for the FIM. Other leaf
nodes are then added into the active list and their properties
will be later updated with the FIM.

Now let us consider how to take the FIM to update the
properties for nodes in the active list. Given a node Nl

whose index is denoted as (i, j, k), our first job is to find
all neighboring source points. We propose an axis-wise
method to find all neighbors for each node. Taking the X-
axis for example, we first calculate the following index for
each node:

Ix = k ∗ ni ∗ nj + j ∗ ni + i, (7)

where (ni × nj × nk) represents the grid resolution. After
sorting all nodes by Ix in parallel, neighbors of Nl along
the X-axis can easily be found by checking neighbors of
Ix in the sorted array of nodes. Likewise, the neighbors
along other axis can also be found by sorting Iy and Iz .
Afterward, a standard FIM can be taken to update properties
for nodes in the active list. Since there only exists a narrow
band of nodes at each level, a small number of iterations are
required for the FIM. After doing the FIM, all internal and
leaf nodes will be labels as source points, thus providing
initial values for node generation in the next level.



4.1.3 Constructing nodes in the top-most level

Compared to an intermediate level, construction of the top-
most level differs in one major point that we use a uniform
grid to store the signed distance field rather than just a nar-
row band near the boundary. The resolution of the uniform
grid can be influenced by a lot of factors, including the size
of domain of interest, GPU thread number and user-defined
threshold, etc. After an appropriate resolution for the top-
most level is chosen, the construction of the signed distance
field follow the same procedure as that for the intermedi-
ate level. First, all internal nodes are initialized from their
children and labeled as the source points. Then, the stan-
dard FIM is taken to iteratively update the signed distance
values for other leaf nodes until they converge. Since the
resolution of top-most level is usually low, a small number
of iterations will be sufficient for the convergence.

5. Boolean operations

SDF is the function representation (F-rep) of a geometric
object [27]. The analytic definitions of boolean operations
of F-rep have been developed by Rvachev ([30, 31]). One
of the analytical descriptions can be simple formulated as
follows [29]

φ3 = φ1|φ2 = min(φ1, φ2), union
φ3 = φ1&φ2 = max(φ1, φ2), intersection
φ3 = φ1\φ2 = φ1&(−φ2), difference

(8)

which have C0 continuity [27]. However, boolean opera-
tions between two AASDFs are not so straightforward due
to the adaptive representation using hierarchical sparse oc-
trees. In this section, we will present how to do boolean
operations for two AASDFs and guarantee the newly gen-
erated SDF satisfies all properties defined in Sec. 4.

Given two AASDFs, a similar bottom-up procedure will
be taken to construct the new AASDF. First the boolean op-
erations are performed on the nodes in the finest level of
two AASDFs according to Eq.8. Then the nodes in the in-
termediate levels and top-most level are constructed in the
same way as described in Sec. 4.

The boolean operations of two AASDFs should be per-
formed with the support of acquiring the signed distance
values of arbitrary points. Therefore, for any point, how to
get the smooth and accurate signed distance value of that
point from the AASDFs becomes a priority problem to be
solved. A general approach is to interpolate SDF values
from their neighboring nodes. Due to the hierarchical octree
based adaptive sampling, the construction of neighbor rela-
tionships is challenging. For that, we start from the neigh-
bors in the same level. As shown in Fig.4, for leaf node
Nl, N

′

l is its neighbor at the same level. If N
′

l has children
nodes, we visit the nodes that is adjacent to Nl, and visits

recursively down until reaching the leaf nodes. According
to this rule, N1

l+1 and N2
l+1 are the final leaf nodes that are

visited. Then we push the N1
l+1 and N2

l+1 into the indices
list of neighboring nodes of Nl, while pushing Nl into the
indices list ofN1

l+1 andN2
l+1. For each leaf node, we assign

a GPU thread to execute as described above. In this way, all
neighboring nodes of the leaf nodes would be found.

Figure 4: Nodes of two levels demonstrate the finding pro-
cess of the neighboring nodes.

Due to the different sizes of the adaptive grid, linear in-
terpolation introduces a large error, we choose to interpo-
late using the moving least squares method. For a point
x = (x, y, z), the signed distance value of the point is for-
mulated as:

φ(x) = a+ b ∗ x+ c ∗ y + d ∗ z (9)

where (a, b, c, d) is the coefficient which can be obtained by
solving the following objective function:

min(J) = min(

n∑
i=1

ωi(x)(φ(xi)− φi)2) (10)

where xi is the neighboring node, φi is the signed distance
value of xi, and ωi(x) is the weight function (here we use
the cubic spline function).

Considering two AASDFs denoted as φ1(xo1,∆x1) and
φ2(xo2,∆x2) that satisfy the properties defined in Sec. 4.
The new AASDF φ

′
(x

′

o,∆x
′
) generated from the boolean

operation of two AASDFs has an origin as:

x
′

o = min(xo1, xo2) (11)

which naturally aligns with the origin of the Cartesian co-
ordinate system. Furthermore, two grid spacings ∆x1 and
∆x2 have two possible distinct cases:

1. ∆x1 = ∆x2: the new AASDF can be acquired from
the boolean operation of two AASDFs according to
Eq.8 directly since the nodes in the finest level are nat-
urally aligned.

2. ∆x1 6= ∆x2: the grid spacing of the new AASDF can
be set as one randomly chosen from ∆x1 and ∆x2,



and for the AASDF whose grid spacing is not selected,
its nodes in the finest level would be reconstructed.
The process of reconstructing is generally consistent
to constructing, where the mere difference lies in the
primitives of AABBs changing from triangles to cells.

6. Experiments and Results

Experiments are performed on a PC equipped with an
Intel Xeon W 2245 CPU, 64 GB of RAM, and an NVIDIA
GeForce RTX 3090 GPU with 24 GB memory. Our algo-
rithm is implemented in C++ with the all expensive parts
parallelized in CUDA.

6.1. Accuracy and efficiency of the construction process

(a) (b) (c)

(d) (e) (f)

Figure 5: Comparison of sparse topology with uniform
grids, the color indicates the signed distance values and the
wireframe indicates the topology. (a) Model of the sphere.
(b) The cross section of the sphere’s AASDF. (c) The cross
section of the sphere’s SDF constructed on the uniform
grids. (d) Model of bunny. (e) The cross section of the
bunny’s AASDF. (f)The cross section of the bunny’s SDF
constructed on the uniform grids.

To verify the accuracy of our method, the AASDFs are
compared to the SDFs on the uniform grids. The SDFs on
the uniform grids are implemented on GPU with FIM. The
sparse topology and uniform grids share the same grid spac-
ing on the finest level. As shown in Fig.5, the AASDFs
have an accuracy comparable to the SDFs on uniform grids.
However, our method significantly outperforms the uniform
grids in terms of both construction efficiency and memory
overhead, as shown in Tab.1. Moreover, as the model be-
comes more complex, e.g., with an increasing number of
triangles, the advantage of using our AASDF is further en-
larged.

Model Name Sphere Bunny Kitten
Triangles 18,000 69,664 274,196

Uniform Time(ms) 33 149 980
Voxels 970,299 4,184,178 23,541,210

Ours Time(ms) 25 37 86
Voxels 112,664 324,488 1,139,606

Table 1: Comparison of construction time and mem-
ory overhead for AASDFs and uniform grids. The grid
spacing on the finest level of sphere, bunny, and kitten
are 0.035mm, 0.02mm, 0.0135mm respectively. The level
number of AASDFs for the sphere, bunny, and kitten are set
to 3, 3, 4 respectively.

In order to verify the efficiency of our algorithm, com-
parison experiments with multi-BVH [20] are performed on
five different models. For a valid comparison, we maintain
the number of sampling points to be comparable by adjust-
ing the grid spacing for the finest level ∆x. As shown in
Tab.2, the construction time of our method is also com-
parable to that of multi-BVH for a comparable number of
sampling points. Considering that multi-BVH dose not en-
able the construction of neighbor relationships for accessing
adaptive SDFs, the statistical time of our method does not
include this process either. In our method, the level num-
ber of the five models is 4, and the padding of the AABBs
of triangular meshes is 0. For multi-BVH, the resolution of
bunny and kitten is from 163 to 10243 and the resolution of
david head, eros and ramesses is from 163 to 20483.

The grid spacing for the finest level is a parameter that
controls the resolution of the adaptive topology and can be
set according to the requirements. In addition the level num-
ber and the padding of AABBs of triangular meshes are also
important parameters. The level number of Fig.6(a)(c) is 3,
and of Fig.6(b)(d) is 4. It is obvious that more levels means
a sparser top-most level grid with fewer sampling points,
and naturally the distance field away from the boundary
would be coarser. The padding of AABBs of triangular
meshes in Fig.6(a)(b) is 0, and in Fig.6(c)(d) is 1. Obvi-
ously, more padding of AABBs of triangular meshes would
generate more nodes in the finest level along the boundary
of model. More padding may be required to obtain the cor-
rect global distance field when the model is more complex.
All these parameters should be adjusted according to the
models and requirements.

6.2. Accuracy and efficiency of boolean operations

When the grid spacing for the finest level of two models
are not the same, both the larger or smaller grid spacing can
be specified for boolean operations. Fig.7 demonstrates the
union of two spheres in the case of consistent and inconsis-
tent grid spacing. Fig.7(c) is the union with the consistent



Models Name Bunny Kitten David head Eros Ramesses
Triangles 69,664 274,196 583,032 949,920 1,652,528

Multi-BVH[20] Time(ms) 35 80 150 180 279
Voxels 320,240 1,114,080 2,587,752 3,927,664 4,748,768

Ours Time(ms) 25 62 134 215 294
Voxels 312,380 1,136,974 2,583,774 3,974,160 4,805,552

Table 2: Comparison of the construction time of our method with multi-BVH[20].

(a) (b)

(c) (d)

Figure 6: The cross sections of the bunny’s AASDFs. The
level number of (a), (b), (c), (d) is 3, 4, 3, 4, respectively,
and their padding of AABBs of triangular meshes is 0, 1, 0,
1, respectively.

grid spacing, Fig.7(f) is the union with the larger one of the
inconsistent grid spacing, and Fig.7(i) is the union with the
smaller one. It can be seen that when the grid spacing of
two models does not match, our method is still able to per-
form boolean operations and get results with comparable
accuracy.

To verify the efficiency of our method for boolean op-
erations, we perform union, intersection and difference op-
erations of two AASDFs representing a bunny and kitten,
respectively. Tab.3 provides statistics on the efficiency of
performing boolean operations under different conditions.
When the grid spacing of the two models are identical, the
boolean operations have a time consumption comparable to
that of the construction of AASDFs. The number of sam-
pling points of the intersection operation in this condition is

Figure 7: Union of two spheres with different grid spacing
for the finest level. (a), (b) The cross sections of sphere with
grid spacing ∆x = 0.05. (c) The cross section of the union
of spheres with cross sections of (a) and (b). (d), (e) The
cross sections of sphere with grid spacing ∆x = 0.03 and
∆x = 0.05, respectively. (f) The cross section of the union
of spheres with cross sections of (d) and (e). (g), (h) The
cross sections of sphere with grid spacing ∆x = 0.05 and
∆x = 0.085, respectively. (i) The cross section of the union
of spheres with cross sections of (g) and (h).

less than either of the two models, so less time is required.
The number of sampling points for the union and difference
operations are larger, so it takes more time. When the grid
spacing of the two models are not identical, the boolean op-
erations in that case take longer because the grids in the
finest level need to be reconstructed for the model that does
not satisfy the conditions.

The comparison between AASDFs and uniform grids
is also performed for Boolean operations. The grid spac-
ing of the uniform grids is same as the grid spacing of the
finest level if AASDFs. As shown in Tab.4, in terms of
both time and memory overhead of Boolean operations, the
AASDFs outperforms the uniform grids. And as the models
of Boolean operations become more and more complex, the



∆x of bunny 0.015 0.018 0.013
∆x of kitten 0.015 0.015 0.015

Bunny Time(ms) 93 75 119
Voxels 1,296,744 851,254 1,605,127

Kitten Time(ms) 93 93 93
Voxels 903,752 903,752 903,752

Union Time(ms) 112 247 285
Voxels 1,664,874 2,723,322 2,544,201

Inter-* Time(ms) 66 154 213
Voxels 588,938 705,613 681,095

Diff-* Time(ms) 109 252 271
Voxels 1,591,538 2,646,309 2,467,623

Table 3: Construction time and storage overhead for the
construction process and Boolean operations. ∆x is the grid
spacing for the finest level. Inter-* and Diff-* represent the
intersection and difference operations of bunny and kitten.

Ours Uniform

Two
spheres

Union Time(ms) 18 28
Voxels 125,024 1,123,668

Inter-* Time(ms) 14 50
Voxels 44,864 1,123,668

Diff-* Time(ms) 19 37
Voxels 122,064 1,123,668

Bunny &
Kitten

Union Time(ms) 48 328
Voxels 563,915 8,414,540

Inter-* Time(ms) 32 333
Voxels 205,843 8,414,540

Diff-* Time(ms) 49 348
Voxels 545,995 8,414,540

Table 4: Construction time and storage overhead for the
Boolean operations of AASDFs and uniform grids. The
grid spacing on the finest level of two spheres and bunny
& kitten are 0.035mm, 0.02mm respectively. Inter-* and
Diff-* represent the intersection and difference operations.

advantages become greater.
Fig.8 shows the comparison of different interpolation

methods. Since it is a sparse topology, calculating the dis-
tance value of a point requires interpolation between grids
of different sizes. Linear interpolation would cause jagged-
ness in the distance field, resulting in inaccurate calculated
distance values. The moving least squares interpolation
method can obtain smoother and more accurate distance
fields.

Fig.9 shows the difference, union, and intersection oper-
ations of complex models. The first stage is the difference
operation of a box and a box with ripples. In that process the
grid spacing of the finest level is 0.03, the level number is 4,

Figure 8: The cross sections of the union of two spheres
with different interpolation method. (a) Result of linear in-
terpolation. (b) Results of Moving Least Squares.

Figure 9: (a) Difference operations of box and ripples. (b)
The front of the union operations of armadillo and box. (c)
The left of the union operations of armadillo and box. (d)
Intersection operations of sphere and armadillo in box.

Figure 10: The union of bunny and sphere flushed by fluid.

the padding of the box with ripples is 3, and the padding of
the box is 2. The second stage is the union operation of the
difference model of the first stage and the armadillo. The
grid spacing of that stage is 0.015, the level number is 4,
the padding of the difference model and the armadillo are
3. The third stage is the intersection operation of the union



model of the second stage and the sphere. The grid spac-
ing is 0.018, the level number is 4, the padding of the union
model is 3, and the padding of the sphere is 0. This example
demonstrates the ability of our method to perform continu-
ous Boolean operations on different models. In the Fig.10,
the AASDF obtained after Boolean operation of bunny and
sphere is used as the boundary of the fluid simulation. The
grid spacing of that example is 0.005, the level number is
4, the padding of bunny is 2, and the padding of sphere is
1. That sample demonstrates that the AASDF constructed
by our method can be used as a stable boundary for fluid
simulation.

7. Conclusion

We presented a complete set of algebraic adaptive signed
distance fields for GPU. Compared to state-of-the-art meth-
ods, our method not only shows comparable construction
performance and storage costs, but also can efficiently do
boolean operations between different models at an interac-
tive speed. As a result, our method can be integrated into
a real-time fluid simulator to provide interactive collision
detection between the fluid and dynamic boundaries.

While our method theoretically supports boolean opera-
tions between any two AASDFs, the performance and ac-
curacy can be influenced by the grid spacing defined for
the finest level of each AASDF. Therefore, we suggest do
boolean operations between two AASDFs that have close
values of the finest grid spacing. Besides, due to the align-
ment issue, the boundary of the top-most level jitters un-
naturally. However, this jittering issue will not affect the
signed distance value stored inside. We will consider to use
other alignment strategies to fix the jittering issue. Finally,
we plan to apply our method to more physical based simu-
lations to handle collision detection in real-time.
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