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Abstract. Portal hypertension is one of the major complications in
patients with chronic liver diseases (CLD) which induces the increase
in portal vein gradient pressure. At advanced stage, it can cause the
esophageal varices and variceal hemorrhage. Therefore, portal hyperten-
sion has been the leading cause of mortality in CLD patients. To diag-
nose portal hypertension, the invasive hepatic venous pressure gradient
(HVPG) measurement is still the only validated technique to accurately
evaluate changes in portal pressure and regarded as the standard refer-
ence. However, it entails the limitation of invasive procedure and have the
risk of further bleeding and inflammation. In this paper we propose an
Eulerian computational fluid dynamics (CFD) model to facilitate hemo-
dynamics analysis. To enable consistent simulation results with different
boundary conditions, a diffuse boundary handling technique was pro-
posed to impose smooth boundary conditions for both the pressure and
velocity fields. We also propose a computational workflow for quantify-
ing patient-specific hemodynamics in portal vein systems non-invasively.
The simulation is performed on patient-specific PV models reconstructed
from CT angiographic images. Experiments show that pressure changes
in the PV of patients with portal hypertension due to blockage of the
RPV are significantly lower than that of normal subjects.

Keywords: Diffuse boundary conditions · Pressure change · Non-invasive
diagnosis · Portal hypertension · CFD.

1 Introduction

Portal hypertension is the hemodynamics abnormality associated with the most
severe complications of cirrhosis (including ascites, hepatic encephalopathy and
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bleeding from gastroesophageal varices), and has emerged as the leading cause
of mortality in cirrhotic patients [3]. While liver cirrhosis arise from various
causes including viruses, toxins, and genetics, a common theory indicates that
portal hypertension mainly arise from the increased blood pressure in portal
vein, possibly due to an increased resistance to blood flow through the portal
system [15]. According to the anatomy, the portal vein system is joined by the
superior mesenteric vein (SMV) and splenic vein (SV), and then divides into the
left portal vein (LPV) and the right portal vein (RPV) branches which entering
the left and right liver lobes, respectively [2]. At advanced stage of liver cirrhosis,
patients with terminal hepatic failure (THF) were observed with atrophy in the
right liver lobe while hypertrophy in the left liver lobe [17]. This phenomenon
indicates the resistance to blood flow in the right portal vein may be increased,
causing increased blood pressure in the veins of the portal system. However,
the direct measurement of blood pressure inside the portal vein is difficult. The
invasive hepatic venous pressure gradient (HVPG) measurement is still the only
validated technique to accurately evaluate changes in portal pressure.

In recent years, computational fluid dynamics (CFD) has shown great poten-
tial in hemodynamic analysis, together with noninvasive and invasive imaging
techniques [18]. Since CFD itself has a variety of different methods and each has
its own advantages and shortcomings, it should be rather careful when adopting
a numerical method to study the hepatic flow. For example, the accuracy of
the finite element method (FEM) is largely influenced by the temporal/spatial
resolutions, numerical solvers and boundary handing techniques [8]. In hemo-
dynamics analysis, the choice of boundary conditions is in fact of particular
importance to better reproduce in vivo conditions because only a small part of
the PV system will be retained for simulation [11]. Despite the recognized im-
portance [16, 5], previous works on how to find a CFD-based identifier that can
help diagnose portal hypertension noninvasively are rather limited [14] and only
a few studies have devoted efforts to addressing the intrinsic issues in compu-
tational models to better understanding hemodynamics in PV systems. Most of
them only apply the FEM solver to solve hemodynamics in the PV system, yet
pay no attention on the numerical problems [12].

In this paper, we propose an Eulerian CFD model to facilitate hemodynam-
ics analysis. Our method is based on the assumption that the increased blood
pressure in the portal vein system is caused by the blockage in the blood flow
through the cirrhotic liver tissue. For patients with portal hypertension, the
large veins are subsequently developed to get around the blockage. Therefore,
if the same boundary conditions are applied and a blockage is applied on right
portal vein, the pressure change in PV systems of patients with portal hyper-
tension is expected to be smaller than those without portal hypertension. To
verify this idea, the following contributions were made: (1) an Eulerian compu-
tational fluid dynamics model for quantifying patient-specific hemodynamics in
portal vein systems; (2) a diffuse boundary handling technique that is able to
impose smooth boundary conditions for both the pressure and velocity fields;



(3) a workflow for quantifying pressure changes in PV that helps discriminate
patients with portal hypertension from normal subjects.

2 Methodology

2.1 Blood flow model

In 3D Eulerian space, the general model for the hemodynamics in portal vein
(PV) systems is given by the Navier–Stokes equation

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇ · τ + b, (1)

where ρ is the fluid density, v = (u, v, w) is the velocity vector, p is the pressure,
τ = ∇v + ∇vT is the stress tensor, µ is the dynamic viscosity coefficient, b
is the external force per unit volume and ∇ represents the gradient operator.
For simplicity, we assume the blood behaves as an incompressible Newtonian
fluid and the vessel walls are rigid. We also assume that there are no body forces
acting on the blood flow. Besides, since the PV is far from the heart, the influence
of the cardiac cycle can be neglected [6]. The momentum Eq. (1) can then be
simplified into

−∇p+ µ∆v = 0, (2)

where ∆ is the Laplacian operator that is equal to ∇ · ∇. Since there are no
sources or sinks of blood inside a vessel, the velocity field should satisfy the
following continuity equation as well

∇ · v = 0, (3)

which indicates the blood flowing in the vessel from all inlets equals to the total
amount of blood flowing out through outlets.

2.2 Diffuse boundary conditions

To solve Eq. (2) and (3), we propose to discretize all physical quantities on a
uniform marker and cell (MAC) grid [7], as shown in Fig. 1. It is important
to note that all three components of v must be defined on centers of cell faces
(two components in a 2D space), staggered by half a grid spacing with respect
cell center on which pressure values are defined. This is to avoid non-physical
wiggle solutions for the pressure and velocity fields [10]. To solve accurate hemo-
dynamics, cells inside the vessel should be identified first. It is a common way to
use a binary mask to isolate the fluid domain of interest from other tissues [9].
However, the problem with a binary threshold is that it will introduce stair-step
grid artifacts into the simulation results [1].

To remove the stair-step grid artifacts, we propose to impose diffuse bound-
ary conditions for Eq. (2) and (3). We first introduce a signed distance function
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Fig. 1. An illustration of the MAC grid used to discretize the computational domain.

φ(x) to represent the blood vessel implicitly (Information on the practical im-
plementation of how reconstruct φ is given below under Section 2.3). For an
arbitrary point x ∈ R3, |φ(x)| tells us its distance to the vessel boundary, and
sign(x) > 0 means x is located inside a blood vessel while sign(x) < 0 means the
opposite case. In the following discussion, we only demonstrate how to impose
diffuse boundary conditions in a one-dimensional space. Consider a cell inside
the vessel that is far away from the boundary (i.e., ui+1, ui−1 and ui are all
located inside the computational domain), the Laplacian of u can be discretized
into

L(ui) =
ui+1 − 2ui + ui−1

d2
, (4)

where d represents the grid spacing. Assume ui is now located inside the bound-
ary and ui+1 is located outside of the boundary, as shown in Fig. 2(a). Note
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Fig. 2. Illustration of boundary cells. (a) velocity samples; (b) pressure samples.

that no velocity sampling point is located just on the boundary. To impose a
Dirichlet velocity boundary condition of ub, we assume ui−1, ui+1 and ub satisfy
the following linear relationship

ub − ui−1

d+ φui
=
ui+1 − ub
d− φui

, (5)



where φui is the signed distance of ui. Since ui+1 is outside of the boundary, we
are able to reformulate L(ui) as

L(ui) =
Aiub + (2−Ai)ui−1 − 2ui

d2
, Ai =

2d

d+ φui
(6)

after substituting Eq. 5 into Eq. 4. By clamping the value of φui into a range
of (0, d], Ai becomes a constant ranging from 1 to 2. Note if ui is located on
the boundary, i.e., φi = 0, L(ui) equals to 2ub−2ui

d2 . This indicate the velocity
boundary condition is directly imposed on the velocity sampling point of ui.
Otherwise, if φi > d, Eq. 6 is just simplified into the form of Eq. 4 and the
velocity boundary condition is imposed on the velocity sampling point ui+1.
In a similar way, the Laplacian of p (see an illustration in Fig 2(b)) can be
formulated as

L(pi) =
Bipb + (2−Bi) pi−1 − 2pi

d2
, Bi =

2d

d+ φpi
(7)

where Bi is a constant ranging from 1 to 2, and φpi represents the clamped signed
distance of pi.

Finally, let us consider a standard discretization of the divergence of u

D(ui) =
ui+1 − ui

d
. (8)

By imposing a Dirichlet boundary condition, we assume ui+1, ui and ub satisfy
the following linear relationship

ub − ui
d
2 + φpi

=
ui+1 − ui

d
, (9)

where φpi is the signed distance of pi. Substituting Eq. 9 into Eq. 8, the divergence
of u can be reformulated as

D(ui) = Ci
ub − ui
d

, Ci =
2d

d+ 2φpi
, (10)

where Ci is a constant ranging from 1 to 2 since φpi is in a range of [0, d/2].

2.3 Data pre-processing and numerical implementation

To validate the proposed boundary handling technique, both model analysis and
patient-specific analysis were conducted. For the patient-specific analysis, all
analyses were conducted in accordance with the principles of West China Hospi-
tal and met the requirements of medical ethics. Patients’ approval and informed
consent were waived as our study was purely observational and retrospective in
nature. All patients underwent CT angiography, and the invasive transjugular
HVPG measurement. Normal subjects only underwent CT angiography. Fig. 3
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Fig. 3. A pipeline demonstration of all data pre-processing steps and CFD model to
estimate pressure change in PV caused by blood blockage in the RPV.

outlines a pipeline showing all data-processing steps and CFD model to estimate
pressure change in PV caused by blood blockage in the RPV.

Transjugular HVPG Measurement. The transjugular HVPG measurement
(reference standard) was performed by following the established standards [3].
Pressure measurements were conducted by using a balloon catheter (Edwards
Lifesciences, Irvine, California) with a pressure transducer at the tip. A zero
measurement with transducer open to air was needed before the transjugular
catheterization. Free hepatic venous pressure was measured in the right hepatic
vein. As the balloon was inflated for total occlusion of the right hepatic vein,
the wedged hepatic venous pressure was measured. Continuous recording was
necessary until the pressure reached a plateau. All measurements were taken
in triplicate and then averaged. HVPG was calculated by subtracting the free
venous hepatic pressure from the wedged hepatic pressure.

CT Image Acquisition. Datas from all the subjects were collected through
computed tomography systems (Sensation 64 CT (Siemens), or Sensation 16
CT (Siemens)) in West China Hospital, affiliated with Sichuan University. The
triple-phase CT examinations including non-enhanced, arterial, and portal vein
phase were obtained, in which potal vein phase was used to reconstruct geometric
models. The scout of abdomen was acquired from the lung bases to the iliac crests
including the entire liver. Arterial phase of the same region started about 20−30s
after the contrast agent administration, and followed with portal venous phase
(30− 40s). The reconstruction was performed on advantage 3D workstation and
the reconstitution thickness was set at 1− 2mm.

Segmentation of portal vein systems. The open-source software 3D Slicer [4]
was used to reconstruct the geometry of the PV system models for CFD simula-
tion. To facilitate the hemodynamic calculations, some parts of the reconstructed
surface mesh of the PV system were pruned, retaining only the PV and its main
branch vessels including the left portal vein (LPV), right portal vein (RPV),
superior mesenteric vein (SMV) and splenic vein (SV). Vascular centerline was
extracted by the computational geometry algorithm library (CGAL) to facilitate
the measurement of the distance between two probing planes (see Fig. 3(d)).

Estimation of pressure change in PV. Signed distance fields of blood vessels
were first reconstructed with the Fast Sweeping Method [19]. Other parts were



implemented with C++ and the SIMPLE algorithm [10] was adopted to solve
the discretized governing equations (2) and (3) (see supplementary materials for
more details). Motived by virtual HVPG [12], two simulations were taken for
each patient-specific data. In the first simulation, Neumann velocity boundary
conditions were imposed on the outlets of both LPV and RPV. In the second
simulation, we virtually blocked the outlet of RPV but left LPV open to mimic
a situation when patients with cirrhosis suffered from an increased resistance to
blood flow through the portal system. A constant flat profile of ū = 0.1364m/s
was imposed as the inlet velocity on portal vein for all models [13], including
both patients and normal subjects. Finally, the pressure change before and after
RPV blockage was be calculated.

3 Experiments and Results

3.1 In silico study on a steady Poiseuille flow

An analytic laminar steady flow case was first studied to verify the accuracy of
our method, as sketched in Fig. 4. Since the flow is caused by a pressure gradient,
the analytical solution to the Poiseuille flow in a circular pipe along axis x can
be written as

δp =
4µLumax

R2
(11)

where δp represents the pressure drop over a length L of the pipe, R is the
pipe radius and umax is the maximum velocity. Since Ansys Fluent has been
commonly used to analyze hemodynamics, the steady Poiseuille flow was first
solved with a finite element method embedded in ANSYS 2020 R2. To verify the
accuracy under different boundary conditions, two velocity profiles were imposed
at the inlet cross-sections, including a constant flat profile of ū = 0.2m/s and

the corresponding exact profile u (r) = 2ū
(

1− r2

R2

)
m/s with R = 5.4× 10−3m.

Besides, a zero-pressure boundary condition was imposed at the outlet cross-
sections and a non-slip boundary condition was imposed at the vessel walls for
all models. It can be noted from Fig. 4(a) that if the exact velocity profile is given,
the simulation results show good convergence to the exact solution for all three
different spatial resolutions. Our method does not outperform FEM at a spatial
resolution of d = 2mm, but shows a good performance as the spatial resolution
is increased to d = 0.5mm. Otherwise, if the constant velocity profile is given,
the simulation with FEM fails to converge as grid resolution is increased, the
relative error of pressure with the finniest spatial resolution is still over 104%.
In contrast, our method does not suffer from the sensitivity problem caused by
boundary conditions and is able to reproduce consistent simulation results for
both cases. This feature makes our method more applicable for further clinical
applications because the exact velocity profile is usually unattainable in real
situations and only an approximate average velocity can be measured (e.g., with
Doppler US).
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(a) Poiseuille flow
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(b) With an exact BC
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(c) With a constant BC

Fig. 4. In silico study of a steady Poiseuille flow. (a) an illustration of the steady
Poiseuille flow; (b) a comparison of simulation results under an exact velocity profile;
(c) a comparison of simulation results under a constant velocity profile.

3.2 In-vivo validation with invasive HVPG

After in silico validation with our method, we applied it on real models con-
structed from CT angiographic images. We enrolled consecutive CLD patients
who underwent contrast-enhanced CT within 2 weeks of HPVG measurement.
Patients were excluded according to the following criteria: (a) a prior variceal
treatment (i.e., band ligation and endoscopic varices ligation (EVL)) before ad-
mission; (b) patients with histopathologically confirmed as hepatocellular carci-
noma (HCC); (c) a history of splenectomy, hepatectomy or portal-azygous dis-
connection. A total of three patients with liver cirrhosis and three subjects with
normal livers are studied. The pressure difference δp before and after RPV was
blocked is colored mapped and demonstrated in Fig. 5. In addition, an average
pressure change in PV is calculate as

δp̄PV =

∫
VPV

δpdV

l
, (12)

where VPV represents the total volume enclosed by the two probing planes as
shown in Fig 3(d) and l is the length of the centerline. Note the pressure changes
in PV of patients with portal hypertension (see the top row in Fig. 5) are sig-
nificantly lower than that of normal subjects (see the bottom row in Fig. 5).

4 Conclusion

This paper proposed an Eulerian CFD model for quantifying patient-specific
hemodynamics in portal vein systems non-invasively. To address boundary prob-
lems within traditional models, diffuse boundary conditions were proposed to
impose smooth boundary conditions on both the pressure and velocity fields. Ex-
periments show that our approach is less sensitive to boundary conditions and is
able to reproduce consistent simulation results under two commonly used bound-
ary conditions. The approach is also performed on patient-specific PV models
reconstructed from CT angiographic images, additional experiments show that
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Fig. 5. In-vivo validation with invasive HVPG. Experiments show that pressure
changes in the PV of patients with portal hypertension due to blockage of the RPV is
lower than that of normal subjects.

our method is able to capture pressure changes in the PV that show a significant
difference between patients with portal hypertension and normal subjects.

Acknowledgements. This research was supported by the National Natural
Science Foundation of China (No.61872345, No.62072449, No.61632003), Sci-
ence and Technology Support Program of Sichuan Province(No.2021YFS0144,
No.2021YFS0021), Post-Doctor Research Project, West China Hospital, Sichuan
University (No.2020HXBH130), Youth Innovation Promotion Association, CAS
(No.2019109).

References

1. Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid-
fluid coupling. ACM Transactions on Graphics (TOG) 26(3), 100–es (2007)

2. Bosch, J., Pizcueta, P., Feu, F., Fernández, M., Garćıa-Pagán, J.C.: Pathophys-
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