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Reformulating Hyperelastic Materials with Peridynamic Modeling
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Figure 1: The flower example. We simulate the flower as a nonlinear and heterogenous material where the material stiffness of the stem is
larger than that the leaves. (a)Imposed with a gravity; (b)Imposed with an external force on the stem; (c) Imposed with an external force on
a leaf.

Abstract
Peridynamics is a formulation of the classical elastic theory that is targeted at simulating deformable objects with discon-
tinuities, especially fractures. Till now, there are few studies that have been focused on how to model general hyperelastic
materials with peridynamics. In this paper, we target at proposing a general strain energy function of hyperelastic materials
for peridynamics. To get an intuitive model that can be easily controlled, we formulate the strain energy density function as a
function parameterized by the dilatation and bond stretches, which can be decomposed into multiple one-dimensional functions
independently. To account for nonlinear material behaviors, we also propose a set of nonlinear basis functions to help design
a nonlinear strain energy function more easily. For an anisotropic material, we additionally introduce an anisotropic kernel to
control the elastic behavior for each bond independently. Experiments show that our model is flexible enough to approximately
regenerate various hyperelastic materials in classical elastic theory, including St.Venant-Kirchhoff and Neo-Hookean materials.

CCS Concepts
•Computer Graphics → Three-Dimensional Graphics-Animation;

1. Introduction

Since peridynamics was originally proposed by Silling [Sil00]
with the ambition to uniformly solve problems involving both
continuities and discontinuities, it has been mainly applied by
researchers in engineering to study crack formation and propaga-
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tion [SB05,GSS07,HHBS12]. Although peridynamics can natural-
ly handle crack surfaces the same way as interior regions due to
the integration nature, the theoretical equivalence of peridynamics
in modeling continuous regions compared to continuum mechanics
remains unclear. Till now, only some specific model in peridynam-
ics has been proven to converge to the classical elastic theory [S-
L08], which means a lot of mature theories and experiences in con-
tinuum mechanics cannot be directly applied to peridynamics. This
also explains why most of the work in peridynamics only consider
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simple elastic models, e.g., a purely bond-base model [LBC∗14]
or a simple linear elastic model [HWW17]. So far, how to extend
peridynamics to model general hyperelastic materials still remains
a challenging problem.

In computer graphics, simulation of complex three-dimensional
hyperelastic materials has been mostly carried out with a finite
element method (FEM), which could involve nonlinearity [B-
J05,STC∗12,XSZB15], anisotropy [BC00,LB14,LB15] or both [P-
DA01,BBO∗09,KMOD09]. Most of these studies are based on em-
pirical constitutive models. Therefore, to get a desired simulation
result, it usually requires to choose a specific constitutive model
as well as do some tuning of the physical parameters. However, in
certain cases, we even do not know which constitutive model is the
right one to choose, due to the complexity of real-world materials.
Besides, the simulation results of numerical methods also depend
on many factors, such as the time step, the mesh size and the nu-
merical solver, etc. Usually, it is not an easy task to remove all these
influences.

To address above difficulties, Xu and colleagues [XSZB15] pro-
posed to decompose the strain energy density function into several
one-dimensional scalar functions, parameterized by the principal
stretches of the deformation gradient. Then, by editing each scalar
function separately using piecewise splines, their method can ef-
fectively regenerate various hyperelastic materials. However, since
there is no equivalent formulation of the proposed strain energy
function for peridynamics, it is not an easy task to directly ap-
ply their method for modeling hyperelastic materials within peri-
dynamics. Recently, He and colleagues [HWW17] demonstrated
that the strain energy density function of a linear elastic material
in continuum mechanics can be reformulated as a collection of the
strain energy stored independently on each bond. Unfortunately,
their elastic model cannot be extended to hyperelastic materials.

In this paper, we aim at reformulating the strain energy func-
tion of hyperelastic materials in continuum theory for peridynam-
ics, motivated by [XSZB15]. Instead of representing the strain en-
ergy as a function of the principal stretches, we formulate it as a
combination of separate one-dimensional functions which are pa-
rameterized by the dilatation and the bond stretches. To accoun-
t for nonlinear material behaviors, we propose a set of nonlinear
basis functions to help design a nonlinear strain energy function
easily and intuitively. The separation of strain energies also great-
ly facilitates the generation of anisotropic materials, which can be
realized by integrating an anisotropic kernel function. Experiments
show that our model is flexible enough to approximately regener-
ate several hyperelastic materials in classical elastic theory, e.g.,
St.Venant-Kirchhoff or Neo-Hookean materials.

To summarize, our contributions are as follows:

• A reformulated strain energy density function of hyperelastic
materials for peridynamics, parameterized by the dilatation and
bond stretches.
• A set of one-dimensional basis functions satisfying three neces-

sary conditions, ensuring plausible hyperelastic material design.
• A simple technique to control the material anisotropy.

2. Related Work

In computer graphics, FEM is the most commonly used method
to simulate deformable objects. Early works have been mainly fo-
cused on simple linear elastic models [GM97], which is only suit-
able for small deformations. O’Brien and Hodgins [OH99] used
FEM for the modeling of brittle fracture. Müller and Gross [MG04]
presented a linear corotational FEM to model large deformations.
McAdams and colleagues later [MZS∗11] extended the corotation-
al FEM for the simulation of skeleton driven, high resolution elas-
ticity models. Civit-Flores and colleagues also applied the corota-
tional FEM to simulate large deformations by addressing the ele-
ment collapse and inversion problem. However, the linear elastic
model is usually too simple to cover all real-world materials. To
model nonlinear elastic materials, Wu and colleagues [WDGT01]
proposed nonlinear FEM using mass lumping to produce a diag-
onal mass matrix that allows real time computation. Volino and
colleagues [VMTF09] took the material nonlinearity into consid-
eration for accurate cloth simulation. Xu and colleagues [XSZB15]
proposed a more general nonliear FEM model that allows easi-
er design of isotropic nonlinear materials. Li and Barbič inves-
tigated both linear anisotropic materials as well as general lin-
ear (non-orthotropic) anisotropic materials in [LB15]. Others also
have considered material heterogeneity in material modeling [K-
MOD09, CLSM15].

Elastic objects have also been widely modeled with meshless
methods. One popular approach is the smoothed particle hydrody-
namics (SPH) method, which was initially invented for astrophysi-
cal problems. Researchers in computer graphics later extended SPH
to animate elastic bodies by Desbrun and Gascuel [DG96]. To an-
imate large deformations, Becker and colleagues [BIT09] present-
ed a co-rotational SPH formulation for elastic bodies. Jones and
collaborators [JWJ∗14] directly embedded the deformation gradi-
ent to animate elastoplastic material. Alternately, other researchers
have directly use constraints instead of elastic forces to simulate
deformable objects [MHHR07, RJ07, GHF∗07]. Müller and Chen-
tanez [MC11] used oriented particle stored with rotation and spin
to simulate various types of solids, including rigid, plastic and soft
bodies. Liu and colleagues [LBOK13] propose a solver based on
block coordinate descent to animate cloth in real time. Macklin and
colleagues [MMCK14] later build a unified GPU-based system to
model various materials. Since PBD has the drawbak that the sim-
ulation accuracy is affected by the iteration number, Bouaziz and
collaborators [BML∗14] developed a fast and robust projective dy-
namics simulator by including geometric constraints as strain ener-
gies in a quadratic form. Wang and Yang [WY16] proposed a new
gradient descent method using Jacobi preconditioning and Cheby-
shev acceleration to solve nonlinear elastic objects on GPU. Liu
and colleagues [LBK17] showed that Projective Dynamics can be
interpreted as a quasi-Newton method, therefore proposed a fast
method to simulate various hyperelastic materials. Rahul and col-
leagues [NOB16] proposed an ADMM method which extends the
Projective Dynamics and is applicable to a broad range of objective
functions including nonlinear models and hard constraints.

As we know, the governing equations in continuum mechan-
ics are usually in differential form. They are not quite suitable
for complex elastic materials involving discontinuities. Therefore,
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Figure 2: Schematic representation of a peridynamic body.

Silling [Sil00] proposed peridynamics to uniformly handle contin-
uous and discontinuous materials. Since its essence is to use in-
tegration to compute the force on a material particle, it can be
easily integrated into a neural network to develop new material
models. The capability of original peridynamics model based on
bond is rather limited. It even cannot model materials with dif-
ferent Poisson’s ratios. Silling and colleagues [SEW∗07] general-
ized the bond-based peridynamics to a state-based model, thus al-
low for modeling of elastic material with different Poisson’s ratios.
Levine and colleagues [LBC∗14] revisited the spring-mass systems
to the animation of brittle fracture from a peridynamic perspective.
Chen and colleagues [CZZ∗17] applied peridynamics to simulate
a wide range of material phenomena including elasticity, plastic-
ity, and fracture. To improve the simulation performance, He and
colleagues [HWW17] proposed a projective method motivated by
the position-based method. Their method is robust and efficient to
model versatile elastoplastic materials. However, the simulation ac-
curacy remains unverified. Besides, how to accurately regenerate
any elastic behaviors with peridynamics is also not clear.

3. Background and Motivation

For completeness, we briefly review the state-based peridynamic
theory and introduce some basic notations that will be used in the
following context. Let B0 ⊂ Rn be the reference configuration of a
deformable body at time t0 and Bt ⊂ Rn be the transformed con-
figuration at time t. Under the deformation mapping ϕ : B0 →Bt ,
points x and x′ are mapped to y and y′ respectively. A bond for
point x is defined as

ξ = x′−x, (1)

with x′ representing a point in the neighborhood of point x which
is typically defined as follows

Hx = {ξ ∈ B0|x+ξ ∈ B0,‖ξ‖< δ}, (2)

where δ is the horizon radius. If not specified, we typically set the
horizon radius to be two times of the particle sampling distance d.
A schematic illustration of a peridynamic body is show in Figure 2.

Let Lm denote the set of all tensors of order m, a state of order m
in state-based peridynamics is defined as a mapping function from
a bond ξ to a tensor of order m as follows

A〈ξ〉 :H→Lm (3)

where the bracket notation is used merely to distinguish a state from

the mapping function between B0 and Bt . What distinguishes peri-
dynamics from classical continuum mechanics is that the theory
is inherently non-local that material points are assumed to interact
through long-range forces represented as a force vector-state T〈ξ〉.
Therefore, the governing equations of motion in peridynamics can
be formulated as

ρü =
∫
Hx

{
T〈ξ〉−T′ 〈−ξ〉

}
dVξ +b, (4)

in which ρ is the density, u = y− x is the displacement field, T is
a pairwise force whose value is the force vector that point x exerts
on point x′, b is the body force per volume. Note that we have
neglected the dependence on x and t for the sake of brevity, e.g.,
ρ is an abbreviation for ρ(x, t), T〈ξ〉 ≡ T [x, t]〈ξ〉 and T′ 〈ξ〉 ≡
T
[
x′, t
]
〈ξ〉.

Consider an arbitrary deformation vector state Y〈ξ〉≡ y′−y, the
general form of an elastic constitutive model in state-based peridy-
namics is written as

T = T̂(Y) (5)

by neglecting all variables other than the current deformation vec-
tor state. It means the value of T〈ξ〉 may depend on all local bonds
inHx. SinceHx contains an infinite number of bonds, the constitu-
tive relationship in Equation 5 is therefore too complex for practical
implementation. As we know, the constitutive equation in continu-
um mechanics describes a relationship between a strain tensor and
a stress tensor, both of which contain 6 independent values for an
arbitrary deformation in three-dimensional space. That is to say, a
bunch of relationships in Equation 5 are redundant for modeling
real-world materials. However, it is also an oversimplification to
assume that any pair of particles interact only through the current
bond and are totally independent of all other neighboring bonds, as
was done in the bond-based peridynamics [Sil00]. This motivates
us to propose a new constitutive model for hyperelastic materials
by combining bond-based forces and state-based forces together.
The purpose is to guarantee the proposed constitutive equation is
easy for code implementation, but can model a variety of nonlinear
and anisotropic materials.

Before deriving a general constitutive model for hyperelastic ma-
terials, we first investigate the linear peridynamic solid proposed by
Silling and his colleagues [SEW∗07]

W =
k(θ−3)2

2
+

α

2

∫
Hx

w〈ξ〉
(

e〈ξ〉− θ−3
3

x〈ξ〉
)2

dVξ (6)

where k is the bulk module, α equals 15µ
m with µ representing the

shear module and m =
∫
Hx

w〈ξ〉x〈ξ〉x〈ξ〉dVξ, w〈ξ〉 is a weighting
function, e〈ξ〉 represents the extension scalar state defined as

e〈ξ〉= y〈ξ〉− x〈ξ〉 (7)

with y〈ξ〉=
∥∥y′−y

∥∥ ,x〈ξ〉= ∥∥x′−x
∥∥ and θ represents the dilata-

tion calculated from the following formula

θ =
3
∫
Hx

w〈ξ〉x〈ξ〉y〈ξ〉dVξ∫
Hx

w〈ξ〉x〈ξ〉x〈ξ〉dVξ

(8)

For a small deformation, the physical meaning of θ is similar to the
first invariant of the deformation gradient tensor F in continuum
mechanics. To see this, considering an isotropic deformation with
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Figure 3: Illustration of the basis functions.

the form y〈ξ〉 = (1+ ε0)x〈ξ〉 where ε0 is a small constant, i.e.,
ε0� 1, we have the following relationship

θ = 3(1+ ε0) = λ1 +λ2 +λ3, (9)

where λi are the principal stretches of the deformation gradient F.
By invoking the definition of θ and doing some simple algebraic
operations, Equation 6 can be reformulated as a function of the
dilatation θ and bond stretches τ〈ξ〉= y〈ξ〉/x〈ξ〉 as follows

W (θ,τ〈ξ〉) =
(

k
2
− αm

18

)
(θ−3)2

︸ ︷︷ ︸
g(θ)

+
α

2

∫
Hx

w〈ξ〉(τ〈ξ〉−1)2(x〈ξ〉)2dVξ︸ ︷︷ ︸
h(τ〈ξ〉)

.

(10)

From the above definition, it can be noted that the strain energy ac-
tually consists of two independent parts, the first part is a function
of θ while the second part is a function of τ〈ξ〉. The advantage of
separating θ and τ〈ξ〉 is significant, we can reduce the deformation
space and control each part independently, thus making the design-
ing of a new hyperelastic material easier and more intuitive, as was
done in [XSZB15]. Although both g(θ) and h(τ〈ξ〉) should be in
a quadratic form for the linear elastic solid, the strain energy den-
sity function in Equation 10 can be easily extended to model more
complex hyperelastic materials.

4. Peridynamic Modeling of Hyperelasticity

In continuum mechanics, the strain energy density for an ar-
bitrary isotropic hyperelastic material corresponds to a function
ψ(I1, I2, I3) where

I1 = λ
2
1 +λ

2
2 +λ

2
3,

I2 = λ
4
1 +λ

4
2 +λ

4
3,

I3 = λ
2
1λ

2
2λ

2
3.

(11)

To make the material easier to control, Xu and col-
leagues [XSZB15] decouple ψ into several independent functions
involving λ1, λ2 and λ3. Similarly, we define the strain energy
density for peridynamic hyperelastic materials as

W (θ,τ〈ξ〉) = λg(θ)+µ
∫
Hx

w〈ξ〉G 〈ξ〉h(τ〈ξ〉)dVξ, (12)

where g(θ) models the isotropic energy which produces a force
similar to the hydrostatic stress in continuum mechanics, while

Figure 4: Stretching test. The bar is stretched under a constant ten-
sile force with its material modeled with different basis functions.

h(τ〈ξ〉) models the anisotropic energy. w〈ξ〉 is a normalized
weighting function which indicates

∫
Hx

w〈ξ〉dVξ = 1. The key part
that distinguishes our model from a continuum-based method is
that we assume the value of h(τ〈ξ〉) only depends on the current
bond ξ. Although it is an oversimplification to neglect all other
bonds, our model still can create a variety of hyperelastic materials
by introducing nonlinear functions g and h as well as an anisotropic
function G 〈ξ〉 to model the material anisotropy. To design a physi-
cal realistic material, nonlinear functions g and h should satisfy the
following three necessary conditions

• W (θ,τ〈ξ〉) = 0 at τ〈ξ〉= 1,
• W (θ,τ〈ξ〉) reaches its minimum value at τ〈ξ〉= 1,
• g′′ > 0 and h′′ > 0 for all θ,τ〈ξ〉 ∈ (0,+∞).

The first condition guarantees there is no stress if no deformation
has occurred. The second condition avoids the occurrence of nega-
tive strain energy. The third condition ensures that the elastic force
will always increase with larger deformation, no matter it is under
extension or compression.

By taking the derivative of Equation 12 with respect to y, the
force vector state for an arbitrary hyperelastic material is written as

c© 2018 The Author(s)
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T〈ξ〉= W (θ,τ〈ξ〉)
∂y

=
w〈ξ〉
x〈ξ〉

(
λg′ (θ)+µG 〈ξ〉h′ (τ〈ξ〉)

) y−y′

‖y−y′‖

(13)

During the derivation, we redefine θ as the following formulation
for brevity

θ =
∫
Hx

w〈ξ〉 y〈ξ〉
x〈ξ〉dVξ. (14)

By invoking the condition
∫
Hx

w〈ξ〉dVξ = 1, the value of θ cal-
culated from Equation 14 is approximately equal to a third of that
calculated from Equation 8. More details on how to calculate g′, h′

and G will be discussed next.

4.1. Nonlinearity

Since both g and h are one-dimensional functions, we can decom-
pose them into a combination of simpler one-dimensional basis
functions. In numerical analysis, several kinds of basis functions
are available for the decomposition of an arbitrary function f (s),
among which the most commonly used ones are the Fourier ba-
sis and the polynomial basis. Although we can choose any basis
function to construct W (θ,τ〈ξ〉), how to meet the proposed two
conditions for the strain energy function is challenging.

According to the concept of a Taylor series, any real stress-strain
curve that is infinitely differentiable can be represented as a pow-
er series in the form of ∑k akxk. However, to inversely construct a
physically plausible material, three necessary conditions proposed
at Section 4 need to be satisfied. To simplify this process, we prefer
to form a set of basis functions with each one satisfying all three
necessary conditions. By invoking the strain energy function of typ-
ical hyperelastic materials in continuum mechanics, e.g., linear or
neo-Hookean materials, we propose to use the following collection
to form the basis for f (s),s ∈ (0,+∞)

An =
1
n
(

sn+1−1
n+1

+
s−n+1−1

n−1
),Bn =

2
n
(

sn+1−1
n+1

−s+1), (15)

where n ∈ Z+ and A1 is a special case defined as A1 = s2−1
2 −

log(s). Therefore, the first and second derivatives for each basis
can be formulated as follows

A′n =
sn− s−n

n
, B′n =

2(sn−1)
n

, (16)

A′′n = sn−1 + s−(n+1), B′′n = 2sn−1. (17)

We can also prove that any combination of An and Bn still sat-
isfies all necessary conditions. Figure 3 demonstrates the curves
of some basis, it can be noticed that the major difference between
An and Bn is that the value of An reaches +∞ as s approaches 0.
This has the advantage of providing sufficient repulsive forces as
the material is under compression. Figure 5 shows a comparison of
the elastic behaviors after applying different basis for modeling e-
lastic materials. When the Armadillo is fallen on the floor, the right
example, which we set g = A4 and h = A4, can effectively avoid

Figure 5: Armadillo falling onto the ground. Left: a linear elastic
model; Right: a nonlinear elastic model. The nonlinear model pro-
duces rich small-deformation dynamics for hands and legs while
still gets a plausible simulation at its back.

(a) isotropic (b) anisotropic 0◦ (c) anisotropic 90◦

Figure 6: A trampoline. Different deformation patterns can be
noticed by using isotropic and different anisotropic scalar state.
(a)isotropic, (b) (c) anisotropic with different rotation matrixes.

unnatural behaviors for regions under compression compared to the
left example, which we only adopted a linear elastic model by set-
ting g = B1 and h = B1.

4.2. Anisotropy

Although it is possible to design an anisotropic function to model
the material anisotropy, we prefer not to do so in our practical im-
plementation due to the complexity of designing a function that is
both anisotropic and nonlinear. Instead, we introduce an anisotrop-
ic scalar state G 〈ξ〉 to control the material anisotropy independent-
ly, which greatly simplifies the designing of anisotropic material-
s. Inspired by the orthotropic material proposed by Xu and col-
leagues [XSZB15], our anisotropic scalar state can be characterized
with its three orthotropic material directions and their respective in-
tensity.

G 〈ξ〉=
∥∥∥∥ΣR x′−x
‖x′−x‖

∥∥∥∥ , (18)

where R is a rotation matrix with its three column vectors repre-
senting three orthotropic material directions. Σ is a diagonal ma-
trix with three diagonals σ1,σ2,σ3 to control the force magni-
tude in each material direction. Besides, we require the condition
σ1σ2σ3 = 1 should always be satisfied to ensure that G only con-
tributes to model the material anisotropy without affecting the over-
all material stiffness. Figure 6 shows an example simulated with
different material anisotropy. The three diagonal elements of Σ are
initially set to σ1 = 4, σ2 = 0.25 and σ3 = 1.0.

5. Numerical Solution

In this section, we will describe how to apply a quasi-Newton
method to solve the dynamics of a hyperelastic material.
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5.1. Discretization

In our implementation, the peridynamic body is discretized into
individual particles with each particle i carrying the reference posi-
tion xi, current position yi, mass mi, and volume Vi, etc. According
to Equation 13, the elastic force imposed on particle i by its neigh-
boring particle j is written as

Ti j =
wi j

xi j

(
λg′(θi)+µGi jh

′(τi j)
) y j−yi

|y j−yi|
, ∑

j∈Hi

wi jV j = 1 (19)

where the subscript i j represents the bond ξ = xi − x j and θi is
calculated from Equation 14 with particle discretization. The gov-
erning equations for each particle i can then be formulated as

miüi =Vi ∑
j∈Hi

(Ti j−T ji)V j + fext
i (20)

where fext
i = biVi An easy approach to solve Equation 20 is by ap-

plying an explicit Euler method. However, its stability depends on
the choice of the timestep size. Therefore, we seek to implement an
implicit method to improve the simulation stability. From the view
point of energy, Equation 20 is equivalent to solving the following
energy minimization problem

E(q) = min
qn+1

(
M

2∆t2 ‖q
n+1−q∗‖2 +∑

i
W (θi,τi j)Vi) (21)

where M is the mass-matrix, ∆t is the simulation step size, q is
a vector with all particles’ current positions assembled together
and q∗ is an intermediate state with q∗ = qn +∆tvn +∆t2M−1fext .
Note that W (θi,τi j) represents a function of the dilatation θi and al-
l independent bond stretches τi j. By applying the Newton method,
the energy minimization problem can be solved iteratively with the
following equation

(K+
M
∆t2 )(q

k+1−qk)=
M
∆t2 (q

∗−qk)+∇qk ∑
i

W (θi,τi j)Vi (22)

where qk represents the solution of k−th iteration, K is the stiffness
matrix which can be calculated as the second derivative of the total
strain energy, and ∇qk represents a gradient operator with respect
to qk. By taking enough iterations, qk+1 will finally converge to the
exact solution. However, since the value of K varies at each itera-
tion, it can be very time-consuming if we directly use the Newton
method to solve the governing equations for hyperelastic materials.

5.2. Quasi-Newton Method

We implement the quasi-Newton method proposed by Liu and his
colleagues [LBK17]. The key idea is to replace the exact Hessian
matrix K with an approximate one defined as follows

L = (∑
i

∑
j∈Hi

ki jAi jAT
i j)⊗ I3 (23)

with ki j represents the stiffness for each bond in the reference
configuration, defined as ki j =

wi j

x2
i j

(
λg′′(1)+µGi jh′′(1)

)
. Ai j is

a column vector of dimension n(number of all discrete points),
Ai j,i = 1,Ai j, j =−1,Ai j,other = 0.⊗ is the kronecker product. Due
to above approximation, the Hessian matrix can be pre-computed at
the beginning of simulation to accelerate solving the linear system
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Figure 7: The decrease of the relative error with respect to the
iteration count for the turtle example at time t = 0.8s.

Name freedom ∆t (s) iters tf (ms)
Flower 5.4K 0.04 20.3 104

Armadillo 18K 0.01 9.6 323
Wrinkle Cloth 10.8K 0.01 6.2 146

Cylinder 2.5K 0.04 10.4 57
Bunny 35K 0.01 16.8 1300

Table 1: Statistics and timings of our examples, tf is the average
time per frame.

of equations. However, one side effect is that we still need to take
an extra line search strategy to find a local minimum.

Line Search The line search is taken as follows. At the end of
each iteration k, we check the value of E(qk+1) and compare it
to E(qk). If E(qk+1) is smaller, we accept qk+1 as the solution of
iteration k. Otherwise, we need to further check the value of E(q∗)
where q∗ is the middle point of qk+1 and qk. We repeat this until
we find a point that decreases the total energy.

6. Results and Discussions

In our implementation, we solve the linear system of equations on
a CPU(Intel Core i5-7500 3.4GHz) while calculate other parts in
parallel on a GPU (GTX 1060 3G). In case an object is experienc-
ing an extreme deformation under large external forces, it is hard
for our current model to prevent shape inversion. To see this, con-
sider an undeformed object whose shape is suddenly inverted, the
total strain energy will still remain zero, therefore no force will help
recover the object to its initial state. Motivated by He and his col-
leagues’s recent work [HWW17], we propose to add the following
force to prevent shape inversion

Tinv
i j = ki j[yi−y j−Fi(xi−x j)] (24)

where Fi is the particle approximation of the deformation gradient
calculated from particle i’s neighborhood. In case shape inversion
occurs for particle i, i.e.,

∣∣F̄i
∣∣ < 0, we only need to exchange the

first two rows of Fi to help recover the shape.

Convergence Analysis. We evaluate the convergence of our
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method with the relative error, defined as

E
(

qk
)
−E (q)

E
(
q0
)
−E (q)

(25)

where q0 is the initial guess and qk is the solution at k− th it-
eration. Figure 7 plots the convergence rate at a chosen time for
the turtle example, where q represents the final solution when
E(qk)−E(qk+1) is smaller than our predefined threshold (1/2)10.
In this test, a minimum relative error of 1×10−8 is reached. How-
ever, in our practical implementation, we typically use qk+1 instead
of the final solution for saving time. We find a relative error of
1× 10−4 would be enough for most examples. Therefore, 5 ∼ 25
iterations will be enough. Table 1 presents the statistics and timings
of our examples.

Poisson’s ratio. According to the definition of the strain energy
density in Equation 12, there are two parameters that character-
ize the elastic behaviors of hyperelastic materials for selected basis
functions. Although it is possible to relate λ and µ to physical pa-
rameters in continuum mechanics for small deformations, as was
done in [SA05], strictly setting up their equivalence for any large
deformations is not possible. Therefore, by equating the total strain
energies of our model with a classical linear elastic model, we pro-
vide the following approximate relationship to help readers familiar
with continuum mechanics model hyperelastic materials more eas-
illy

λ =
9EY υ

2(1+υ)(1−2υ)
, µ =

15EY

4(1+υ)
. (26)

EY and υ represents Young’s modulus and Poisson’s ratio, respec-
tively. By setting υ to different values, Figure 8 demonstrates how
our method can effectively generate materials with different Pois-
son’s ratios. For this example, we set Young’s modulus to 1× 105

for all three examples and use B1 as the basis function.

Bending. Theoretically speaking, the bending effect of a cloth
should be controlled by its thickness. However, for a cloth repre-
sented with only one layer of particles, it is feasible within our
model to control the cloth bending by adjusting the radius of H.
In other words, a larger radius for H indicates more neighboring
particles can take part in resisting the bending of a cloth. By choos-
ing different weighting functions and radii of H, Figure 9 demon-
strates a comparison where the left example is taken with δ = 2d,
w〈ξ〉= (1+ |ξ|

δ
)−1 and the right one with δ = 4d, w〈ξ〉= |ξ|

δ
. We

can notice that a larger bending resistance for a larger radius ofH.

Twisting. Figure 10 demonstrates an example to show how our
method can robustly simulate the twisting of a bar. During the sim-
ulation, we rotate a total of 360 degrees for the left end of the bar
while keep the right end fixed.

Collision. Figure 11 shows an collision example of several ob-
jects assigned with different materials. The materials for the ar-
madillo, ball, bunny, cloth and teapot are set to be linear, linear,
nonlinear, anisotropic linear and anisotropic nonlinear, respective-
ly. All objects except the cloth retain the same Young’s modulus
(EY = 5.0×105) and Poisson’s ratio (υ = 0.25). The Young’s mod-
ulus of the cloth is set to 1.0×104. Collisions between objects are
handled with the position-based method [BMM15].

(a) υ = 0

(b) υ = 0.3

(c) υ = 0.49

Figure 8: Bar stretching. Our method can simulate different elastic
behaviors with different Poisson’s ratios and use different weight-
ing functions.

Figure 9: The cloth example. Our method can simulate different
bending stiffness behaviors by adjusting the radius ofH.

Neo-Hookean Material. To approximately model a neo-
Hookean material, which is defined as

Ψ(I1,J) =
µ̄
2
(I1−3)− µ̄ log(J)+

λ̄

2
log2 (J) (27)

in continuum mechanics, where λ̄ and µ̄ represent the Lamé con-
stants, we consider an uniaxial deformation along the x direction
whose deformation gradient is F = diag(s,1,1). The strain energy
density can then be reformulated as µ̄( s2−1

2 − log(s))+ λ̄

2 (log2(s)).
The most appropriate basis functions should be h(s) = A1 and
g(s) = log2(s). However, since log2(s) does not belong to any of
our basis functions, we simply set g(s) = h(s) = A1. Figure 12
demonstrates the stress-strain curves of a linear and neo-Hookean
elastic bar in tension. We can note the results are comparable to
those generated by FEM with our current choice of the basis func-
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Figure 13: Green is a neo-Hookean material. Blue is our approximation for a neo-Hookean in peridynamics. Purple is a linear peridynamics
solid. All three turtles are simulated with the same Young’s modulus and Poisson’s ratio. From left to right is deformation under 0.1x, 1x, 2x,
3x gravity.

Figure 10: Bar twisting. The left end of a bar is rotated 360 degrees
to test the stability of our method.

Figure 11: Deformable objects falling onto a soft coth. The materi-
als for armadillo, ball, bunny, cloth and teapot are set to be linear,
linear, nonlinear, anisotropic linear and anisotropic nonlinear, re-
spectively.

tions. However, to exactly match the simulation results, we should
choose the right basis functions with more care. Figure 13 further
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Figure 12: Stress-strain curves for various elastic material models.

evaluated the accuracy of our model by simulating an elastic turtle.

StVK Material. The strain-energy density function for the St.
Venant-Kirchhoff model in continuum mechanics is

Ψ(F) = µ̄E : E+
λ̄

2
tr2 (E) , (28)

Similarly, for the above uniaxial deformation, the strain energy
can be reformulated as µ̄( s2−1

2 )2 + λ̄

2 (
s2−1

2 )2, we therefore set

g(s) = h(s) = ( s2−1
2 )2 = 3B3−B1

2 . Figure 14 presents a comparison
between our model and FEM in simulating a deformable Stanford
bunny. We can notice similar simulation results for both methods.
However, experiments show that our model has a better stability
in simulating large deformations compared to the finite element
method. It can be noticed from the video that simulation with FEM
breaks down after being imposed with a large external force while
our method remains stable during the whole simulation.

Flower. In Figure 1, we present an interesting example by exert-
ing several different external forces to a flower model. The flower
is treated as a nonlinear and heterogenous StVK material.
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(a) FEM at t = 5.12s (b) PDM at t = 5.12s (c) PDM at t = 12s

Figure 14: The bunny example. Our method is robust at simulating the StVK material while FEM breaks down at large deformations, both
of which are simulated with the same Young’s modulus and Poisson’s ratio.

Limitations. The major limitation of our method is that our
method requires a manual selection of the basis functions to con-
struct an appropriate strain energy function for a given hypere-
lastic material. Besides, some degree of parameter tuning is also
necessary in order to match the simulation result to a given de-
formation sequence. However, since artificial neural network has
been widely used in a lot of areas as well as in material model-
ing [JG06, UK09, CT17], we believe integrating neural networks
into our method can greately alleviate above mentioned problems.

7. Conclusion

In this paper, we present a general strain energy model for peri-
dynamics to simulate various hyperelastic materials involving non-
linearity and anisotropy. The new model is intuitive, flexible and
easy to implement. But just like other continuum-based hypere-
lastic models, our peridynamic-based hyperelastic model still only
consituties a subspace of all nonlinear isotropic and anisotropic ma-
terials. Besides, the theoretical equivalence to the classical elastic
theory is also unclear.

Since peridynamics is still an on-going research area, much
efforts need to be done to improve both its fundamental theory
and numerical solvers. For our future work, we will first explore
whether we can equal peridynamics to the classical elastic theory
for certain hyperelastic models. To improve the simulation perfor-
mance, we would also like to explore more efficient implicit solver
for real-time applications. Finally, since peridynamics was initially
invented for simulating fracture, which is also demonstrated in the
video with a cloth tearing example by integrating the bond failure
condition [SA05] into an anisotropic elastic model, it would be in-
teresting to know whether we can use neural networks to design the
desired hyeperelastic materials and various fracture patterns.
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