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Abstract

We introduce a new biorthogonal wavelet approach to creating a water-tight surface defined by an implicit function, from a

finite set of oriented points. Our approach aims at addressing problems with previous wavelet methods which are not resilient

to missing or nonuniformly sampled data. To address the problems, our approach has two key elements. First, by applying a

three-dimensional partial integration, we derive a new integral formula to compute the wavelet coefficients without requiring

the implicit function to be an indicator function. It can be shown that the previously used formula is a special case of our

formula when the integrated function is an indicator function. Second, a simple yet general method is proposed to construct

smooth wavelets with small support. With our method, a family of wavelets can be constructed with the same support size as

previously used wavelets while having one more degree of continuity. Experiments show that our approach can robustly produce

results comparable to those produced by the Fourier and Poisson methods, regardless of the input data being noisy, missing or

nonuniform. Moreover, our approach does not need to compute global integrals or solve large linear systems.

CCS Concepts

•Computing methodologies → Mesh geometry models; •Mathematics of computing → Computation of transforms;

1. Introduction

Reconstructing water-tight surfaces from oriented point sets (point
samples with associated normals) has been widely studied in com-
puter graphics. An ideal reconstruction method should be scalable
and easy to implement efficiently. Besides, it should also be robust
enough to handle various types of artifacts in point clouds since
captured datasets may be noisy, non-uniform or missing. Manson
et al. [MPS08] proposed an efficient streaming approach based on
wavelets to reconstruct the surface from a large number of orient-
ed point sets. The basic idea of their approach is to compute the
wavelet coefficients of the indicator function of an unknown solid
model (the indicator function is defined to be 1 inside the model and
0 outside of it). Compared to methods such as the Fourier [Kaz05]
or Poisson method [KBH06], the wavelet approach is more efficien-
t due to the local feature of wavelets. However, there are still two
problems with the wavelet approach that remain unsolved. The first
one is that it is not resilient to missing and nonuniformly sampled
data [CT11]. The other is that the reconstructed surface tends to be
non-smooth and may exhibit spurious high-frequency artifacts even
when the input data is clean [KH13].

The reasons are twofold. The first one is that the key formula
of computing wavelet coefficients in their method is derived un-
der an assumption that the implicit function is an indicator func-
tion. In practice, this assumption could fail because we often need
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to smoothly pre-filter the input data, which can be equivalently
seen as implicitly filtering the indicator function (see the discus-
sion in Sec.3.1). So it is inappropriate to apply the formula to the
filtered indicator function especially when the data is incomplete
or nonuniform. The other reason is that non-smooth wavelets were
used for their small compact support. More specifically, Haar (db1)
and db2 Daubechies wavelets were used in their work. In general,
it is difficult to choose the right wavelets that are both smooth and
efficient because smooth wavelets usually require large supports.

In this paper, we propose two techniques to address the afore-
mentioned two problems. For the first problem, we derive a new
formula to compute the wavelet coefficients of the implicit func-
tion. Our formula is based on three-dimensional partial integrations
and does not require the integrated function to be an indicator func-
tion. Thus, our formula allows us to smoothly pre-filter the data. It
can be proven that the formula used in [MPS08] is a special case of
our formula when the integrated function is an indicator function.
For the second problem, Daubechies wavelets have poor smooth-
ness due to their construction with emphasis on the property of or-
thogonality [Dau92]. Our first attempt is to use existing smoother
biorthogonal wavelets such as cdf(n+ 1).m, the B-spline wavelet-
s constructed by Cohen-Daubechies-Feauveau [CDF92]. We have
tested cdf3.1 (second-order B-spline wavelets with one vanishing
moment) with the same support size as db2, but the quality of re-
sults are not good. Although other wavelets such as cdf3.3 and
cdf3.5 can produce good results, they have larger support size. This
motivates us to construct new smooth wavelets. Based on Lemarié-
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Rieusset’s proposition [LR92] recently introduced in [RLH∗17],
we propose a simple method to reconstruct smooth biorthogonal
wavelets with small support and yet produce good smooth surfaces.
Our method explicitly gives the filters of the constructed wavelets,
which is convenient for us to perform the fast wavelet transform.

In summary, we present a biorthogonal wavelet approach to cre-
ating smooth water-tight surfaces from oriented point sets. Our ap-
proach is robust to handle noisy, missing or non-uniform data. The
key contributions are summarized as follows:

• A general formula to compute the wavelet coefficients of the im-
plicit function of the unknown solid model. Our formula does
not require the implicit function to be an indicator function.

• A simple yet general method to construct smooth wavelets with
small support size.

• Specifically, with our method, a family of biorthogonal wavelets
is constructed with almost the same support size as Daubechies
wavelets while having one more degree of continuity.

2. Related Work

There are numerous works on surface reconstruction from point
clouds. Here we review those closely related to ours and refer the
reader to [BTS∗17] for a brief survey on recent developments in
this field or to [BLN∗13] for comprehensive evaluations on a num-
ber of algorithms.

In summary, surface reconstruction methods can be categorized
as follows:

Combinatorial Methods. This family of methods typically pro-
duce an interpolating surface where vertices are from all or a subset
of the input points. Delaunay/Voronoi based methods [CG06] use
a subset of the input points to discretize the space of the underly-
ing surface, and then extract a surface triangulation using specified
algorithms. Famous algorithms include Super Cocone [DGH01]
and its improvements [TKRL11, DG06], Power Crust [ACK01],
Spectral reconstruction [KSO04] and graph cut [LPK09, HK06].
Streaming surface triangulation algorithms [ACA07, BMR∗99]
have also been developed in the pursuit of processing large data set-
s. Xiong et al. [XZZ∗14] propose a novel method based on dictio-
nary learning. Boltcheva and Lévy [BL17] design a fast, paralleliz-
able surface triangulation algorithm by computing the restricted
Voronoi diagram of the input points under the assumption that the
input points are located exactly on the underlying surface. These
algorithms come with guaranteed reconstruction quality [Dey06].
However, the reconstruction that restricts to have vertices only on
the input points is not robust when the data is non-uniform, miss-
ing, or noisy.

Implicit Methods. In contrast to combinatorial methods, implic-
it methods construct an approximate surface using the zero-level set
of a best-fit implicit function of the input points. The implicit func-
tion could be a sum of radial bases [CBC∗01] or piecewise poly-
nomial functions [NOS09, OBA05, OBA∗03], or a signed-distance
function estimated in [HDD∗92, BBX95, CL96].

The Fourier surface reconstruction of Kazhdan [Kaz05] uses an
indicator function as the implicit function to represent the underly-
ing solid model of the input oriented points. The indicator function

can be recovered from its Fourier coefficients computed by surface
integrals over the oriented points. The reconstructed surface is s-
mooth and the method robustly handles noise in the data. However,
both computational and storage costs of computing the coefficients
are high since the basis functions are globally supported and an u-
niform grid is used. This approach was improved in [SBS07] with
an adaptive Fourier technique. Manson et al. [MPS08] propose an
efficient streaming approach by replacing the Fourier bases with
compactly supported wavelets. Recently, their approach has been
extended to consolidating polygon soup by Hu et al. [HLL∗18].

Fourier surface reconstruction was later modified by Kazhdan et
al. [KBH06], which leads to the famous Poisson surface reconstruc-
tion. The key idea is to find an implicit function whose gradient best
matches the normals of the points. This is equivalent to solving a
Poisson equation. Later, streaming [BKBH07], parallel [BKBH09]
and GPU [ZGHG11] implementations are available.

Calakli and Taubin [CT11] develop a variational formulation to
optimize a smoothed signed-distance function by constraining the
position, normal and Hessian. Inspired by their work, Kazhdan and
Hoppe [KH13] address the over-smoothing problem of Poisson re-
construction by adding a position constraint to "screen" the asso-
ciated Poisson equation. Estellers et al. [ESS16] present a robust
method by reformulating the position and normal constraints us-
ing Huber loss functions. Tang et al. [TF18] optimize a curvature-
adaptive signed-distance function on an octree. Since the curvature
was estimated directly on point sets, their method may not perform
well on incomplete data. Liu et al. [LSYD17] use total variation
regularization to deal with the problem of spurious sheets. Pan et
al. [PTC16] use multilevel algebraic spline surfaces to represent the
implicit function. Schertler et al. [STJ∗17] propose an online algo-
rithm for reconstructing surfaces from successively acquired scans.
Schroers et al. [SSW14] present a general variational framework
for most of these algorithms and also give some improvements.

Recently, the sample scale in surface reconstruction has received
much attention. Fuhrmann and Goesele [FG11] develop a fusion
method to estimate the scale information of samples from depth
maps. In their later work [FG14], taken as input an oriented point
cloud with scale information, the floating scale implicit function
was developed for constructing a surface with various scales of ge-
ometric details. Ummenhofer and Brox [UB17] propose to globally
optimize a signed-distance function on an octree using the same in-
put. Since the scale of points is taken into account, the surfaces
reconstructed by these algorithms typically have more geometric
details than those constructed only from oriented points.

Our work is closely related to the wavelet surface reconstruc-
tion [MPS08]. We focus on developing new wavelets with regard to
their properties of smoothness, support size and vanishing momen-
t. We also present a general integral formula to computing wavelet
coefficients. Horacsek and Alim [HA17] construct biorthogonal
wavelets on the Body Centered Cubic (BCC) lattice and use them
to represent volumetric data. Our wavelet construction method is
based on Lemarié-Rieusset’s proposition [LR92] recently intro-
duced in the work [RLH∗17]. They develop an efficient approx-
imate wavelet algorithm for gradient-domain image composition
and use existing wavelets as their bases. Note that the new family
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of wavelets constructed by our method can be also used for their
algorithm.

3. Background

We first review the wavelet [MPS08] and Fourier [Kaz05] surface
reconstruction methods under a unified framework and give some
discussion. Then, we briefly introduce the wavelet theory.

3.1. Wavelet and Fourier Surface Reconstruction Methods

Let {pi} be a set of points sampled from the surface ∂M of a solid
M and {ni} the associated outward normals. The problem is how
to reconstruct the surface ∂M from the oriented point set {pi,ni}.

Both methods define the surface as a level set of an indicator
function. They first construct the indicator function χM of the solid
M from {pi,ni}, and then return the surface ∂M by extracting an
appropriate level set of χM . The key is how to construct χM .

Without loss of generality, let M be embedded in the cube D =
[0,1]3. Given an orthogonal basis Bk with Bk(x) : D → R, χM can
be linearly represented as χM = ∑k ckBk. Here k = [k1,k2,k3]

T ∈
Z

3 is the set of indices and x = [x1,x2,x3]
T. Kazhdan [Kaz05] and

Manson et al. [MPS08] obtain the coefficients ck by computing
surface integrals

ck =
∫

D
χM(x)Bk(x)dx (1a)

=
∫

M
Bk(x)dx (1b)

=
∫

M
∇·Fk(x)dx =

∫
p∈∂M

Fk(p) ·n(p)dσ, (1c)

where Fk = [Fk1 ,Fk2 ,Fk3 ]
T is a vector-valued function on D satis-

fying ∇·Fk = Bk , n(p) is the outward unit surface normal to ∂M

at point p and dσ is the differential surface area of ∂M. Eq. (1a)
follows from Bk is orthogonal. Eq. (1b) follows from that the in-
dicator function on the domain D\M is equal to zero. Eq. (1c) fol-
lows from the Divergence Theorem. The construction of Fk is not
unique. Kazhdan [Kaz05] and Manson et al. [MPS08], respective-
ly, give the form of Fk using their own basis. Given a particular
function Fk, ck can be estimated by discretizing (1c) over the point
samples {pi,ni}

ck = ∑
i

Fk(pi) ·nidσi, (2)

where dσi is an estimate of the differential surface area associat-
ed with the sample point pi. Finally, we get χM = ∑k ckBk by an
inverse transform.

Discussion 1. When the input points {pi,ni} are clean and uni-
formly sampled from the model surface, the estimation of ck using
Eq. (2) works quite well. However, the data in real scans may be
noisy, nonuniform or even incomplete. A pre-smoothing step is of-
ten needed. More specifically, we get a smoothed normal field S ∗n

by convoluting the normals n = {ni} with some smoothing filter S.
Following the lemma in [KBH06], which states that the gradient of
the smoothed indicator function χ̄M = S ∗ χM is equal to the s-
moothed normal field, i.e. ∇χ̄M = S ∗n, our goal actually becomes
the reconstruction of a smoothed indicator function χ̄M from S ∗n.

Recalling (1b) and (1c) are derived under the assumption that the
integrated function should be an indicator function, it would be i-
nappropriate to still use Eq. (2) to estimate the coefficients of the
smoothed indictor function.

Discussion 2. The basis Bk has a significant influence on the effi-
ciency of reconstruction and quality of reconstructed surfaces. For
example, the use of the Fourier basis in [Kaz05] can produce s-
mooth surfaces but at high computational and storage costs, and
the use of orthogonal wavelets such as db1 and db2 in [MPS08] is
efficient but the reconstructed surface is non-smooth. On the other
hand, since the functions Fk satisfy ∇·Fk = Bk, Bk also influence
the choice of Fk. In Sec.4.1, we will discuss how to construct basis
Bk and Fk, and its effect on the accuracy of reconstruction.

3.2. Wavelet Theory

Since the discussed orthogonal bases (the Fourier base and orthogo-
nal wavelets) could not get a satisfying balance between efficiency
and quality, we seek to use biorthogonal wavelets. First, we give
a brief introduction to wavelet theory and refer the reader to the
book [Mal08] or [Kai11] for more details.

One important step of wavelet theory is to hierarchically subdi-
vide an interested function space using some compactly supported
function called scaling function, which satisfies the two-scale rela-
tion

ϕ(t) = ∑
k∈Z

hkϕ(2t − k),

where the coefficients {hk} are called scaling (or low-pass) filter.
This subdivision named multiresolution analysis (MRA) can be for-
mally defined as follows.

Definition 1 A multiresolution analysis (MRA) of a function s-
pace is a sequence of closed subspaces {V j} satisfying V j ⊂ V j+1
and some other properties defined in [Mal08], where each V j =

span{ϕ j,k = ϕ(2 jt − k)}.

Intuitively speaking, V j+1 is bigger or has more details than V j .
Wavelets appear as bases of complementary spaces W j such that
V j+1 = V j ⊕W j, where ⊕ indicates the direct sum. One can con-
struct a function ψ, called a wavelet such that W j = span{ψ j,k =

ψ(2 jt−k)}. Since W j ⊂V j+1, we can linearly represent the wavelet
using ϕ

ψ(t) = ∑
k∈Z

gkϕ(2t − k), (3)

where {gk} are called wavelet (or high-pass) filter.

So far, we have defined the bases ϕk and ψk for subspaces V j

and W j, respectively. However, they may not be orthogonal. In or-
der to compute the coefficients of a function represented by them,
we need to construct their dual bases, denoted by ϕ̃k and ψ̃k, re-
spectively. At first, we give the definition of dual basis.

Definition 2 Let Ũk and Uk be two sets of a Hilbert space e-
quipped with the inner product 〈·, ·〉, Ũk is called a dual set of Uk

if 〈Ui,Ũ j〉 = δi, j for all Ũi ∈ {Ũk} and U j ∈ {Uk}. Specially, Ũk is
called the dual basis of Uk if each of them is a basis of the vector
space.
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Here δi, j is the Kronecker delta that is equal to one if i = j and zero
otherwise. In the case of Uk being orthogonal, Ũk =Uk.

Given fixed bases ϕk and ψk with associated filters {hk,gk}k∈Z,
we can find their dual bases ϕ̃k and ψ̃k using

ϕ̃(t) = ∑
k∈Z

h̃kϕ̃(2t − k), ψ̃(t) = ∑
k∈Z

g̃kϕ̃(2t − k). (4)

Here, the dual filters {h̃k, g̃k}k∈Z are related to {hk,gk}k∈Z by

gk = (−1)1−k
h̃1−k, g̃k = (−1)1−k

h1−k, ∀k ∈ Z. (5)

For compactly supported wavelets, these filters have a finite number
of non-zero coefficients. We can find the smallest interval for such
a filter that the coefficients outside of it are zeros. We denote it by
[b,n] with b being the first index and n the length.

4. Our approach

Recalling our discussion in Sec. 3.1, we have two challenges with
the current formula (1c). The first one is that it is inappropriate to
use the formula to compute the smoothed indicator function χ̄M .
The other is that it is difficult to choose appropriate Bk and Fk.
In this section, we first derive a general formula for computing the
coefficients of χ̄M , and then discuss the construction of Fk and Bk.
Finally, we describe our wavelet construction method.

4.1. A General Formula for Computing Coefficients

The following derivation is under the same framework as used in
Sec.3.1, except we use more general biorthogonal bases.

Our Formula. Let χ̄M be a smoothed indicator function of the sol-
id model M. Given a biorthogonal basis Bk associated with its dual
basis B̃k, χ̄M can be linearly represented as χ̄M = ∑k ckBk. We ob-
tain the coefficients ck by computing volume integrals

ck =
∫

D
χ̄M(x)B̃k(x)dx (6a)

=
∫

D
χ̄M(x)∇· F̃k(x)dx (6b)

=
∫

p∈∂D
F̃k(p) ·n(p)dσ−

∫
D
∇χ̄M · F̃kdx (6c)

=−
∫

D
∇χ̄M · F̃kdx, (6d)

where F̃k = [F̃k1 , F̃k2 , F̃k3 ]
T is a vector-valued function on D sat-

isfying ∇ · F̃k = B̃k. Eq. (6a) follows from the definition of dual
basis. Eq. (6c) follows from a Partial Integration, where n(p) is
the outward unit surface normal to ∂D at point p and dσ is the dif-
ferential surface area of ∂D. The first term of (6c) would be equal
to 0 if F̃k was constructed to equal 0 = [0,0,0]T on the boundary
∂D.

Different from the formula (1c) being a surface integral and only
valid for indictor functions, our formula (6d) is a volume integral
and valid for any function in span{Bk}. Specially, (1c) is one case
of our formula when χ̄M degenerates to χM in our formula. The
middle and right columns of Fig. 1 show 1D smoothed indicator
functions reconstructed using (6d) and (1c) from the two smoothed
gradient fields shown on the left. In this test, we use second-order
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Figure 1: Reconstruction of 1D smoothed indicator functions from

smoothed gradient fields. Left: Two input smoothed gradient fields

obtained by convoluting ∇χ with smoothing filters Sδ1
and Sδ2

, re-

spectively. Middle: Smoothed indicator functions reconstructed us-

ing Eq. (6d) (dashed blue) and Eq. (1c) (dashed green) from the s-

moothed gradient field red-colored on the left, and the ground truth

(red). Right: Results reconstructed from the smoothed gradient field

blue-colored on the left, and the ground truth (red).

B-splines as our smoothing filters Sδ1
and Sδ2

with δ1 and δ2 rep-
resenting their filter sizes, and choose db2 as the basis for both (6d)
and (1c). For the computation of (1c), we follow the method [MP-
S08] adapted to 1D case. We can see that (6d) can accurately re-
cover smoothed indicator functions for large filter size δ and the
original indicator function as δ tending towards 0. Next, we will
discuss how to construct F̃k and its effect on Bk.

Construction of F̃k. Ignoring the condition ∇· F̃k = B̃k, we have
the following lemma.

Lemma 1 Eq. (6d) holds for any function in span{Bk} if and only
if −F̃k is a dual set of ∇Bk.

Proof : We leave the proof to Appendix A.

Note that the lemma also holds for 1D and 2D. Since the number
of dual sets of ∇Bk is infinite, we can not determine a particular
one by the lemma.

In the derivation of Eq. (6d), we have a sufficient condition that
if F̃k satisfy ∇· F̃k = B̃k, then Eq. (6d) holds. However, given an
arbitrary Bk, there are still many choices of F̃k satisfying the con-
dition. For 1D case, we can find Bk such that the choice is unique.

For simplicity, we rewrite −F̃k(x) by B̃0
k(t) : [0,1] → R and

Bk(x) by B1
k(t) : [0,1] → R with its dual basis B̃1

k(t). Here k ∈ Z

is the set of indices. We now have the following relations

∇B
1
k(t) = (B1

k)
′(t) = B

0
k(t), (7a)

∇· B̃0
k(t) = (B̃0

k)
′(t) =−B̃

1
k(t). (7b)

By the lemma for 1D case, B̃0
k computed from the integral Eq. (7b)

is a dual set of B0
k . Recalling that while there are many dual sets of

B0
k , there is only one called dual basis. Thus, our attempt is to find

(B1
k , B̃

1
k) such that (1) B0

k by Eq. (7a) forms a basis of span{B1
k}; (2)

B̃0
k by Eq. (7b) forms a basis of span{B̃1

k}. In this case, by Definition
2, we can infer that B̃0

k is just the dual basis of B0
k . If such (B1

k , B̃
1
k)

exists, we would get two conclusions.

• C 1 . Eqs. (7a, 7b) provide us a way to construct new basis. More
specifically, given such (B1

k , B̃
1
k), (B

0
k , B̃

0
k) can be constructed by

computing the derivative of B1
k and integral of B̃1

k , respectively.
• C 2 . More importantly, observing that Eqs. (7a, 7b) are antisym-

metric, they still hold for the pair of −(B̃0
k ,B

0
k) and (B̃1

k ,B
1
k) (here

the former is constructed using the latter in C1). This means we
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can use the constructed B̃0
k instead of B1

k as the basis for χ̄M . The
benefit is that B̃0

k has one more degree of continuity than B̃1
k as it

is the integral of B̃1
k .

Generally, it is hard to find such basis. Fortunately, wavelets satisfy
the conditions according to Lemarié-Rieusset’s proposition [LR92]
(see Sec.4.2).

So far, we have discussed the construction of F̃k for 1D case.
By tensor-products of B1

k(t), we define B1
k(x) = B1

k1
(x)B1

k2
(y)B1

k3
(z)

and its dual basis B̃1
k(x) = B̃1

k1
(x)B̃1

k2
(y)B̃1

k3
(z), and then construct

F̃k =−[B̃0
k1

B̃
1
k2

B̃
1
k3
, B̃

1
k1

B̃
0
k2

B̃
1
k3
, B̃

1
k1

B̃
1
k2

B̃
0
k3
]T. (8)

They satisfy ∇· F̃k = B̃1
k using Eq. (7b). It can be checked that the

so defined −F̃k is truly a dual set of ∇B1
k (Lemma 1).

4.2. New Wavelets

In the above section, we have obtained a general formula for com-
puting coefficients using an arbitrary biorthogonal basis. We also
give a construction of F̃k, which is closely related to the choice of
1D basis (B1

k , B̃
1
k). We find that it would be useful if (B0

k , B̃
0
k) con-

structed from (B1
k , B̃

1
k) by Eqs. (7a, 7b) satisfying two conditions:

(1) B0
k forms a basis of span{B1

k}; (2) B̃0
k forms a basis of span{B̃1

k}.
Lemarié-Rieusset’s proposition [LR92] shows that wavelets satisfy
the conditions, and gives the specific form of Eqs. (7a, 7b) as well.

In this section, we will present a practical algorithm to construc-
t (B0

k , B̃
0
k) based on the proposition. With the algorithm, we con-

struct a family of wavelets, which is smoother than Daubechies
wavelets and has better reconstruction accuracy than B-Spline
wavelets. First, let’s introduce the proposition. Please refer to [D-
P09, RLH∗17] for more details.

Proposition 1 (Lemarié-Rieusset’s Proposition)

Let {V 1
j } be a MRA of L2(R), with associated scaling and wavelet

functions (ϕ1
,ψ1) and their dual functions (ϕ̃1

, ψ̃1). Then, there ex-
ists a MRA {V 0

j } of the space, with associated scaling and wavelet

functions (ϕ0
,ψ0) and their dual functions (ϕ̃0

, ψ̃0), satisfying:

(ϕ1)′(t) = ϕ0(t)−ϕ0(t −1), (9a)

(ϕ̃0)
′

(x) = ϕ̃1(x+1)− ϕ̃1(x), (9b)

and

(ψ1)′(t) = 4ψ0(t), (10a)

(
1
4

ψ̃0)′(t) =−ψ̃1(t). (10b)

We can see Eqs. (10a, 10b) is a specific form of Eqs. (7a, 7b). Well-
known pairs of wavelets are cdf(n+1).m as (ϕ1

,ψ1) and cdfn.(m+
1) as (ϕ0

,ψ0). For example, the pair of cdf3.5 and cdf2.6 has been
used in [RLH∗17]. However, B-spline wavelets are not suitable for
reconstruction as discussed later. So, we explore to construct new
wavelets using Eqs. (10a, 10b).

Since ψ1 or ψ̃1 often has no analytical representation, it is diffi-
cult to construct ψ0 and ψ̃0 by directly taking the derivative of ψ1

and integral of ψ̃1 as described in C1. Another way is to explicitly

0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Figure 2: Plot of db(m+ 1).(m− 1). We plot the primal and dual

scaling and wavelet functions of db3.1 (left) and db4.2 (right).

compute their function values using numerical differential and in-
tegral methods. However, the constructed wavelets are unfriendly
for taking the fast wavelet transform.

Here, we introduce an algorithm to computing the filters of new
wavelets with the help of Eqs. (9a, 9b). The algorithm can be sum-
marized in the following corollary from Lemarié-Rieusset’s Propo-
sition.

Corollary 1 Let {g1
k} and {g̃1

k} be the filters of compactly support-
ed wavelets ψ1 and ψ̃1, respectively. Their smallest intervals are
[b1,n1] and [b̃1, ñ1]. The filters {g0

k} and {g̃0
k} of new wavelets ψ0

and ψ̃0 can be respectively computed by

g
0 =

1
2

D ·g1
, (11a)

g̃
0 =−2D̃

−1 · g̃1
, (11b)

where g1 denotes a vector that stores {g1
k} for k ∈ [b1 − 1,n1 + 2],

and similarly for g̃1, g0 and g̃0. D is a difference matrix defined by

D =





1
−1 1

· ·
· ·
−1 1

−1





N1×N2

(12)

with N1 = N2 +1 and N2 = n1 +2. D̃ is also a different matrix with
N2 = ñ1 +1 and D̃−1 is a pseudo-inverse of D̃.

Proof : We leave the proof to Appendix B.

In practice, we are often given the filters {h1
k ,g

1
k} of scaling and

wavelet functions (ϕ1
,ψ1) and need to know {h0

k ,g
0
k} of new ones.

In this case, we use Eq. (5) to get their dual filters and vice versa.

Notation of wavelets. By convention, we refer a wavelet type by its
wavelet name with two numbers, such as cdf2.6, cdf3.5. The two
numbers are the count of vanishing moments (VMs) of the dual
wavelet ψ̃ and primal one ψ, respectively. In case of the numbers
being equal, one number is used, such as db1 (db1.1), db2 (db2.2).

A new family of wavelets. Using the corollary, we construct a new
family of wavelets named db(m− 1).(m+ 1) from dbm, such as
db0.2 from db1, db1.3 from db2, and db2.4 from db3. The VM
numbers (m − 1).(m + 1) follow from that ψ0 computed by E-
q. (10a) should have one more VM than ψ1, and ψ̃0 by Eq. (10b)
has one less VM than ψ̃1. Based on C2, dbm can be seen as new
wavelets constructed from db(m+1).(m−1).

In the work [MPS08], dbm was used for reconstruction. We find
that db(m+1).(m−1) is better than dbm since it has one more de-
gree of continuity than dbm while preserving almost the same sup-
port size. This is because, by the integral Eq. (10b), the dual wavelet
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of db(m− 1).(m+ 1) has one more degree of continuity than that
of dbm, and the dual and primal wavelets of dbm are the same. We
will give detail comparisons of these two kinds of wavelets in Sec.
6.

Alternately, B-spline wavelets cdf(n+1).m (when n ≥ 2) can al-
so be used for reconstructions since they are smooth and have been
successfully used for image compositing in [RLH∗17] and other
applications in computer graphics. We find that db(m+1).(m−1)
also produce better reconstructed surfaces than cdf(n+ 1).m when
both of them have the same support size. As an example, Fig. 6(c)
and (e) show the results for the horse dataset reconstructed using
cdf3.1 and db3.1, respectively.

Fig. 2 shows the plots of db3.1 and db4.2. We can see the primal
scaling and wavelet functions of db3.1 are smooth. As an example,
we list the values of the primal and dual filters of db3.1 in Table 1.

5. Implementation

In this section, we describe our complete algorithm for construct-
ing surface from input point set {pi,ni}, which includes three steps:
(1) pre-processing the point set, i.e. computing a smoothed normal
field u from {pi,ni}. (2) computing the coefficients of χ̄M by the
formula (6d) using a particular wavelet base; (3) returning the re-
constructed surface by extracting an appropriate level set of χ̄M .

For the first and third steps, we follow the method in [KBH06] to
estimate a normal field u from {pi,ni} and use their weight aver-
age formula to select an iso-value. We use the dual marching cube
method [SW04] to get the final triangle mesh. We will introduce
the computation of coefficients and its implementation on octrees.

Computation of coefficients. First, we write the wavelet represen-
tation of χ̄M using 3D wavelet bases

χ̄M(x) = ∑
e

∑
je

∑
k

cje,kψ1
je,k(x), (13)

where ψ1
je,k

with e ∈ {0,1}3 are the eight types of wavelets gener-

ated by 3D tensor-products of 1D basis ϕ1 and ψ1, and cje,k are the
corresponding coefficients we need to compute. Then, we compute
the wavelet representation of the smoothed normal field u.

u = ∑
e

∑
je

∑
k

ũje,kΨje,k(x), (14)

where Ψje,k with e ∈ {0,1}3 are the eight types of vector-valued

wavelets derived from the gradient of ψ1
je,k

, and ũje,k are the
wavelet coefficients computed by taking the wavelet transform of
u. Finally, we compute cje,k from ũ by Eqs. (6d, 8)

cje,k =
〈wje

, ũje,k〉

‖wje
‖2 , (15)

where wje
with e ∈ {0,1}3\[0,0,0] are the coefficients of ∇ψ1

je,k
.

We leave the definitions of ψ1
je,k

, Ψje,k and wje
, and the deriva-

tions of Equations (13–15) to Appendix C. Our final Eq. (15) for
computing wavelet coefficients is a 3D extension of the 2D one
in [RLH∗17], where they used it for gradient-domain image com-
positing.

Figure 3: The wavelet transform of the normal field on small grids.

Left: After reading a subset of oriented points (blue+orange orient-

ed circles), we cluster the points in the purple grid and splat each

normal (orange circles) into the orange grid to get a normal field

(green arrows) stored on the facets of the grid. Then, we continue

the same process for another grid (Right). Finally, we perform the

wavelet transform on each orange grid.

Octree-Based Implementation. Our octree-based implementation
of computing coefficients is similar to the one in [MPS08]. Howev-
er, different from their method which computes point-wise sums of
normals ni by the formula (2) on each octree node, we perform the
wavelet transform of the smoothed normal field u on each node. If
we also perform point-wise wavelet transforms of each normal ni,
the cost would be high since every ni would produce multiple nor-
mals due to the convolution process in Step 1. We present a strategy
to reduce the cost considerably.

Our strategy is to read a subset of oriented points each time, and
then cluster the points and splat their normals into non-overlapped
grids of small size. Finally, we perform the wavelet transform of the
normal field on each grid and write the wavelet coefficients extract-
ed by Eq. (15) to the corresponding octree nodes. Fig. 3 illustrates
this process in 2D. The grid width is the maximum of the size of
wavelet filters used and the width of the smoothing filter in Step 1.

6. Experimental Results

We first discuss the reconstruction quality of our method using var-
ious wavelets. Then, we compare our method with the Streaming
Wavelet reconstruction of Manson et al. [MPS08] (SWavelet), the
Poisson reconstruction of Kazhdan et al. [KBH06] (Poisson), the S-
moothed Signed Distance reconstruction of Calakli and Taubin [C-
T11] (SSD) and the Screened Poisson reconstruction of Kazhdan
Hoppe [KH13] (SPoisson). For SPoisson and SSD, we use their
latest implementations of Kazhdan and Hoppe [KH18] and their
default settings. For Poisson, we use SPoisson by setting the val-
ue of the point weight to 0 and leave other settings unchanged. For
SWavelet, we use the implementation by the authors and turn on the
blurring setting. We use three different types of datasets including
the benchmark of Berger et al. [BLN∗13], real scanner datasets and
highly nonuniformly sampled synthetic datasets. The benchmark
has five models: Anchor, Dancing Children, Daratech, Gargoyle,
and Quasimodo. We present the reconstruction results in terms of
speed, memory, efficiency, and accuracy.

Comparisons of various wavelets. We compare the reconstruc-
tion quality of our method with various wavelets. The comparison
is two-fold. First, we compare constructed db(m + 1).(m − 1) to
dbm. Our results show that db(m+ 1).(m− 1) produce better and
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smoother results than dbm. Second, using the same wavelets dbm,
we compare our method to SWavelet. Thanks to our general formu-
la (6d), our method can produce cleaner results than SWavelet.

As an example, Fig. 4 shows the reconstruction results of the first
test of the Dancing Children model. Fig. (f) and (d) (resp. (e) and
(b)) show that the surface of db3.1 (resp. db2.0) is smoother than
that of db2.2 (resp. db1.1). Fig. (a) and (b) for db1.1, and Fig. (c)
and (d) for db2.2 show that our method produces cleaner surfaces
than SWavelet, and are more robust to handle the incomplete data.

Comparing Fig. 4(e) and (f), db3.1 produces smoother surfaces
than db2.0, and has a better ability to repair the surfaces where sam-
ples are missing (see the abdomen and legs of the second child). On
the other hand, since db2.0 has only half support size of db3.1, it
is very suitable when reconstruction speed is more important than
quality. Overall, db(m+1).(m−1) provides us a good tradeoff be-
tween quality and speed by selecting the appropriate wavelet basis.

Comparisons of various methods. We compare our method to
SWavelet, Poisson, SSD and SPoisson on the three types of dataset-
s. Fig. 5 shows the reconstructions of the real scanned Eagle dataset
using the five methods at depth 10. The data is noisy and incom-
plete. We can see that the results of SWavelet and our method
are sharper than that by Poisson. Our method has a better abili-
ty to predict the surface under the neck than SWavelet. SPoisson
and SSD produce sharper results than ours and SWavelet. Fig. 8
shows the results of the last test of the Daratech model at depth 9.
This dataset is highly noisy. SPoisson produces the sharpest result.
However, it over-fits the points leading to noise. Poisson tends to
over-smooth the data. Both SSD and our method produce smooth
surfaces and yet preserve the features. Fig. 6 shows the results of
the horse dataset at depth 9. The dataset is obtained by sampling
a virtual horse model with a sampling density proportional to cur-
vature, and thus highly non-uniform. For this challenging dataset,
SWavelet fails to produce the surface accurately. Poisson, SPois-
sion, SSD and our method can accurately reconstruct the surface.

To evaluate the numerical accuracy of the five methods, we use
the benchmark of Berger et al. [BLN∗13], which simulates scanner
errors such as noise, nonuniform sampling, and misalignment. As
an example, Fig. 7 visualizes the errors in the reconstructions of
the first test of the Dancing Children model as shown in Fig. 4 and
the last test of the Daratech model as shown in Fig. 8. More gen-
erally, Fig. 9 gives the mean distance and angle error distributions
of all the tests of the models of the benchmark for the five meth-
ods. Our method significantly improves the accuracy of SWavelet
and outperforms Poisson. SPoisson and SSD are the two best ones
among the five methods because both methods incorporate posi-
tion constraints, and SSD additionally incorporates Hessian con-
straints. This suggests the importance of adding these constraints
to the wavelet framework.

Performance. In Table 2, we list the time and memory of the five
methods. SWavelet is the fastest and uses the least memory among
the five methods. Compared to SWavelet, our method uses 2 times
of memory and 4 times of time because we need more octree nodes
to store the splatted normals. We can see that the implementation of
SSD using the Adaptive Multigrid by Kazhdan and Hoppe [KH18]
is more efficient than the original one in [CT11]. Compared to
Poisson, SPoisson and SSD, our method has similar memory and

time cost. However, different from those methods which can be
seen as variational implicit methods [SSW14], our method can be
seen as an analytic implicit method since it explicitly gives analyt-
ic solutions for the problem of surface reconstruction. While our
method improves upon SWavelet, to the best of our knowledge, it
is the first analytic implicit method that can produce robust results
comparable to variational implicit methods like Poisson in terms
of both accuracy and efficiency. On the other side, it inherits all
the features of SWavelet such as friendly streaming implementa-
tion, and thus can be implemented in a friendly streaming way to
process very large datasets.

7. Conclusion and Future Work

In this paper, we have introduced a new biorthogonal wavelet ap-
proach for the problem of reconstructing a water-tight surface from
a finite set of oriented points regardless of the input data being
noisy, missing or nonuniform. Our method fundamentally address-
es the problems with previous wavelet methods and improves the
accuracy significantly. The key ingredients are a general formula
to computing wavelet coefficients and a simple method for con-
structing smoother wavelets. With our method, we construct a fam-
ily of smooth biorthogonal wavelets called db(m+1).(m−1). Our
wavelets have almost the same support size as dbm while produc-
ing smooth reconstructed surfaces. Since the wide application of
wavelet theory, we believe the method can be used in other fields.

While our method improves the accuracy of SWavelet consider-
ably, one limitation is that it needs extra tree nodes to store the s-
platted normals in the pre-processing step. This leads to an increase
in memory and computational time. In general, the total number of
nodes is 2 times more than that of SWavelet. This number would
be higher if the input sample was extremely non-uniform. Consid-
ering that the final extracted surface is embedded in a narrow band
of nodes, however, we believe that a large number of nodes could
be trimmed without sacrificing surface quality.

There are two ways to extend our work. First, although we have
given the conditions for the unique construction of F̃k for the 1D
case, i.e. the dual basis of the derivative of B1

k , we have not yet
found similar conditions for the 3D case. However, we know that
the best F̃k should be the dual basis of ∇B1

k. Thus, our goal is to
find a better Bk such that F̃k constructed by Eq. (8) is as close to
the dual basis of ∇B1

k as possible while preserving relatively smal-
l support size. Second, the high accuracy of the Screened Poisson
and SSD reconstruction methods strongly suggest that the incorpo-
rations of position and Hessian constraints would improve the re-
construction accuracy. Thus, our second extension is to incorporate
these constraints to the wavelet framework.
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db3.1 −2 −1 0 1 2 3
h 0.241481456572267 0.659739608441171 0.530330085889911 0.047367172745377 −0.064704761275630 0
g 0 0 −0.258819045102521 −0.707106781186548 0.965925826289068 0
h̃ 0 0.965925826289068 0.707106781186548 −0.258819045102521 0 0
g̃ 0 0.064704761275630 0.047367172745377 −0.530330085889911 0.659739608441171 −0.241481456572267

Table 1: The values of the primal and dual filters of db3.1.

Time (s) Memory (MB) Vertices×106

Model Depth SWavelet Ours SPoisson SSD SWavelet Ours SPoisson SSD SWavelet Ours SPoisson SSD
bunny 9 12 46 54 40 199 400 461 460 0.7 0.7 0.7 0.7
eagle 10 33 140 134 115 548 1190 811 1010 1.6 2.0 1.7 1.7

Daratech 9 5 23 23 20 97 177 482 516 0.3 0.3 0.3 0.3
Dancing Chidren 9 8 32 28 26 156 236 245 357 0.5 0.5 0.2 0.2

Table 2: The time and memory of SWavelet (db2), SPoisson, SSD and our method (db3.1). Poisson has almost the same time and memory as

SPoisson.
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(a) SWavelet (db1) (b) Our (db1) (c) SWavelet (db2) (d) Our (db2)

(e) Our (db2.0) (f) Our (db3.1) (g) Ground truth (h) SPoisson

Figure 4: Comparisons of reconstructions of the first test of the Dancing Children model using SWavelet and our method with different types

of wavelets. The result by Screened Poisson is for reference.

(a) SWavelet (db2) (b) Poisson (c) Our (db3.1) (d) SPoisson (e) SSD

Figure 5: Comparisons of reconstructions of the noisy and incomplete Eagle dataset using SWavelet, Poisson, Screened Poisson, SSD and

our method.

(a) Dataset (b) SWavelet (db2) (c) Our (cdf3.1) (d) Our (db2) (e) Our (db3.1) (f) (S)Poisson (g) SSD

Figure 6: Comparisons of reconstructions of the highly non-uniformly sampled horse dataset using SWavelet, Poisson, Screened Poisson,

SSD and our method.
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(a) SWavelet (db2) (b) Poisson (c) Our (db3.1) (d) SPoisson (e) SSD

Figure 7: Visualization of errors for reconstructions of the Dancing Children model (top row) in Fig. 4 and the Daratech model (bottom row)

in Fig. 8. The errors are the distance from the ground-truth reference samples to the reconstructed surfaces. Errors are visualized using a

blue-green-yellow-red colormap, with blue corresponding to small error and red to large.

(a) Poisson (b) SPoisson (c) SWavelet (db2)

(d) Our (db3.1) (e) Ground truth (f) SSD

Figure 8: Comparisons of reconstructions of the last test (the samples are noisy and incomplete) of the Daratech model using SWavelet,

Poisson, Screened Poisson, SSD and our method.
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Figure 9: Numerical reconstruction accuracy of SWavelet (db2), Poisson, SSD, SPoisson and our method (db3.1) measured by the benchmark

of Berger et al [BLN∗13].
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Appendix A: Proof of Lemma 1

Proof : Let’s first prove the “only if” part.
Taking the gradient of χ̄M = ∑i ciBi and substituting ∇χ̄M =

∑i ci∇Bi into (6d) and defining 〈u,v〉=
∫

D u ·vdx, we have

ck =−
∫

D
∑

i

ci∇Bi · F̃kdx

= ∑
i

ci〈∇Bi,−F̃k〉. (16a)

We can choose N linearly independent functions from the subspace
span{Bk}k∈{1,...,N} and define the coefficient matrix C of size N

with each column being the coefficients of each function. As the
functions are linearly independent, C is invertible. Since Eq. (16a)
holds for any function in span{Bk}, substituting the N functions
into it, we obtain an equation C = M ·C, where M =

[

〈∇Bi,−F̃k〉
]

is a matrix whose (k, i) entry is 〈∇Bi,−F̃k〉. We can see that M is
an identity matrix of size N. Since this holds for any large N, we
get 〈∇Bi,−F̃k〉= δi,k. By Definition 2, −F̃k is a dual set of ∇Bi.

Now we prove the “if” part.
Given that −F̃k is a dual set of ∇Bi, we have 〈∇Bi,−F̃k〉 = δi,k.
Substituting it into Eq. (16a), we get ck = ∑i ciδi,k = ck.

Appendix B: Proof of Corollary 1

Proof : We prove Eqs. (11a, 11b) one by one.
(1). By Eq. (3), substituting ψ1 = ∑k g1

kϕ1(2t − k) into Eq. (10a),
we have

4ψ0(t) = (∑
k

g
1
kϕ1(2t − k))′(t)

= 2∑
k

g
1
k(ϕ

0(2t − k)−ϕ0(2t − k−1)) (17a)

= 2∑
k

(g1
k −g

1
k−1)ϕ

0(2t − k) (17b)

⇒ 2[ϕ0(2t − k)]g0 = [ϕ0(2t − k)]D ·g1 (17c)

⇒ g
0 =

1
2

D ·g1

Eq. (17a) follows from Eq. (9a). Rewriting Eq. (17b) in matrix for-
m yields Eq. (17c), where [ϕ0(2t−k)] denotes a matrix whose each
column is ϕ0(2t − k) for all k ∈ [b1 −1,n1 +2] and D is the differ-
ence matrix defined by Eq. (12). Finally, we get the result.
(2). By Eq. (4), substituting ψ̃0 = ∑k g̃0

k ϕ̃0(2t − k) into Eq. (10b),
we have

∑
k

g̃
0
k(ϕ̃

1(2t − k))′ =−4ψ̃1(t)

2∑
k

g̃
0
k(ϕ̃

1(2t − k+1)− ϕ̃1(2t − k)) =−4ψ̃1(t) (18a)

[ϕ̃1(2t − k)] · D̃ · g̃0 =−2[ϕ̃1(2t − k)] · g̃1 (18b)

⇒ g̃
0 =−2D̃

−1 · g̃1

Eq. (18a) follows from Eq. (9b). Rewriting Eq. (18a) in matrix form
yields Eq. (18b), where [ϕ̃1(2t − k)] denotes a matrix whose each
column is ϕ̃1(2t − k) for all k ∈ [b̃1 − 1, ñ1 + 2] and D̃ is the dif-
ference matrix defined by Eq. (12). Finally, we get Eq. (11b) by a
pseudo-inverse of D̃.

Appendix C: Definition and Derivation in Sec. 5

(1) Derivation of Eq. (13). Let {ϕ1
0,0,ψ

1
j,k} with j ∈ Z,k ∈ Z be a

1D wavelet base. By 3D tensor-products of the base, we can define
a 3D wavelet base with the following eight types of wavelets

ψ1
j[0,0,0],0

= ϕ1
0,0ϕ1

0,0ϕ1
0,0, ψ1

j[1,0,0],k
= ψ1

j1,k1
ϕ1

0,0ϕ1
0,0,

ψ1
j[0,1,0],k

= ϕ1
0,0ψ1

j2,k2
ϕ1

0,0, ψ1
j[0,0,1],k

= ϕ1
0,0ϕ1

0,0ψ1
j3,k3

,

ψ1
j[1,1,0],k

= ψ1
j1,k1

ψ1
j2,k2

ϕ1
0,0, ψ1

j[0,1,1],k
= ϕ1

0,0ψ1
j2,k2

ψ1
j3,k3

,

ψ1
j[1,0,1],k

= ψ1
j1,k1

ϕ1
0,0ψ1

j3,k3
, ψ1

j[1,1,1],k
= ψ1

j1,k1
ψ1

j2,k2
ψ1

j3,k3
.

We can write the wavelet representation as Eq. (13) for any function
in the space spanned by these wavelets.

(2) Derivation of Eq. (14). Taking the gradient of Eq. (13), we have

∇χ̄M(x) = ∑
e

∑
je

∑
k

cje,k∇ψ1
je,k(x).

We can rewrite ∇ψ1
je,k

(x) = wje
Ψje,k as the component-wise vec-

tor product of its coefficient part wje
and its function part Ψje,k. The

coefficient vector wje
= 4eT[2 j1

,2 j2
,2 j3 ]T can be computed using

Eqs. (9a, 10a) and the fact that (ϕ1
0,0)

′(t) = 0 when periodic bound-
ary condition is used. Let u =∇χ̄M and ũje,k = cje,kwje

, the above
equation can be rewritten as Eq. (14), i.e.

u = ∑
e

∑
je

∑
k

ũje,kΨje,k. (19)

(3) Derivation of Eq. (15). Recalling the construction of F̃k in E-
q. (8), we have

F̃je,k =−
wje

‖wje
‖2 Ψ̃je,k, (20)

where Ψ̃je,k are the dual functions of Ψje,k. Substituting Eqs. (19,
20) into Eq. (6d), we have

cje,k =
∫

D
∑
e

∑
je

∑
k

ũje,kΨje,k ·
wje

‖wje
‖2 Ψ̃je,kdx

=
〈wje

, ũje,k〉

‖wje
‖2 .
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