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Figure 1: Red rock: AL9588 4457(83-megapixel) panorama (top row) from 9 photos produced by our curl-free wavelet projeciéii iis
on CPU and0:45s on GPU. The bottom row is the extracted wavelet coef cients by our method. (Data is courtesy of Aseem Agarwala.)

Abstract

Gradient-domain compositing has been widely used to create a seamless composite with gradient close to a composite gradient
eld generated from one or more registered images. The key to this problem is to solve a Poisson equation, whose unknown
variables can reach the size of the composite if no region of interest is drawn explicitly, thus making both the time and memory
cost expensive in processing multi-megapixel images. In this paper, we propose an approximate projection method based on
biorthogonal Multiresolution Analyses (MRA) to solve the Poisson equation. Unlike previous Poisson equation solvers which
try to converge to the accurate solution with iterative algorithms, we use biorthogonal compactly supported curl-free wavelets as
the fundamental bases to approximately project the composite gradient eld onto a curl-free vector space. Then, the composite
can be ef ciently recovered by applying a fast inverse wavelet transform. Considering an n-pixel composite, our method only
requires2n of memory for all vector elds and is more ef cient than state-of-the-art methods while achieving almost identical
results. Speci cally, experiments show that our method gains a 5x speedup over the streaming multigrid in certain cases.

Categories and Subject Descriptgascording to ACM CCS) 1.3.3 [Computer Graphics]: Picture/Image Generation—Display
algorithms

1. Introduction gorithms that can be used to ef ciently solve the Poisson equation,
gradient-domain compositing for large images still remains a chal-
h- . . . L
lenge. One reason is that direct solvers like Cholesky factorization
and Gaussian elimination become impractical for large linear sys-
tem of equations. Iterative solvers like conjugate gradients are ap-
plicable to large sparse systems, but would require many iterations
to get the desired solution if no preconditioning technique, which is
usually non-parallelizable, is used. Another reason is that ef cien-
t iterative solvers like traditional multgrid consume3® memory
for two dimensions. As the number of pixels increases, solving the
linear system entirely in-core quickly becomes impossible.

Gradient-domain compositing is one of the most important tec
nigues in image processing, which has been widely used in appli-
cations such as seamless cloniRGB03JSTSOGFHL 09], seam-

less stitchingfAga07,YHLX13,LDLM15], gradient domain paint-

ing [MPO§|. Its basic idea is to nd a composite image whose gra-
dients best match a composite gradient eld extracted from two or
more registered images. This matching process is actually equiva-
lent to solving a Poisson equation. Although there exist a lot of al-

Y yczhang@scu.edu.cn According to Helmholtz-Hodge decomposition, any suf ciently
Z ehwu@umac.mo smooth vector eld can be decomposed into the sum of a curl-free
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vector eld and a divergence-free vector eld for a simply con- method is later extended to handle spherical imageK1p]
nected domain (like an image). Therefore, we can reformulate the and to run on a distributed computer cluster with multiple nodes
Poisson equation as a projection problem which projects the com-in [KSH10.
posite gradient eld onto a curl-free vector space. The key now be-
comes how can we nd an appropriate curl-free basis for the curl-
free space so that the projection is both Ilghtwelght gnd ef cient. s, especially when a preconditioner is also used. Pérez @@k, [
As we know, the most commonly used curl-free basis is the orthog- - . :

. . . . B03] use the preconditioned conjugate gradient method for seam-
onal basis based on cosine functions, which can lead to an accu-,

) . : . . less cloning and Agarwala et alADA 04] for gradient-domain
rate Poisson-equation solution. Unfortunately, cosine functions are compositing. Later, AgarwalaAga07 solves a reduced linear sys-
global, and the complexity i©(nlogn). Its total computation cost P g ' 9 y

can be twice that of the modern iterative methods accordiniglto [ tem by gxplomr_@ the faf:t the dn‘fe_rence betyveen a S'T"p!e color
cC08BCCZ04. composite and its associated gradient-domain composite is largely

smooth. Szeliski et al§US1] propose a similar technique using
Considering the Poisson-equation solution will be rounded off low-dimensional B-splines to represent the offset eld. Similarly,
to integer numbers ranging from 0 to 255 in image applications, it Farbman et al. fHL 09] use mean value coordinates (MVC) de-
is actually not necessary to get a solution with high accuracy. This ned over an adaptive triangulation of the cloned region to interpo-
motivates us to propose an approximate projection method to solvelate the offset eld at the region boundary or the seams. To accel-
the Poisson equation. Inspired by works in uid dynamits-[ erate the convergence rate, Szeligki¢9(Q proposes to use hierar-
b00, DP0], we use spline functions to form compactly support- chical basis functions as the preconditioner, which is later improved
ed biorthogonal curl-free bases for the projection. Then, we show in [Sze08§. Although these two methods are ef cient at solving the
that the projection can be highly parallelized on GPU with only Poisson equation, they typically require more memory usage as dis-
a small extra memory cost by applying the lifting wavelet trans- cussed in Aga07. Besides, parallelizing the preconditioning step
form [SS96. Compared to an exact projection based on orthogo- is usually not an easy task (e.g., preconditioning via Gauss-Seidel
nal bases, our approximate projection based on biorthogonal curl- steps requires advanced techniques).
free bases is suf cient to get almost identical results for gradient-
domain compositing with the following advantages

Besides the multigrid methods, conjugate gradient methods al-
so converge much faster than the Jacobi or Gauss-Seidel method-

Over the last decades, wavelets have been widely used in im-
age processing, such as denoising, compression, fusion, etc. But
Our approximate projection has &gn) time-complexity, which there are very few works that apply wavelets to improve the ef -
only consists of three fast wavelet transforms. ciency of gradient-domain compositing. Burt and AdelsBA83]

By applying the lifting wavelet transform, our method only needs rst propose to use multiresolution B-splines to hide the seam-
2n of memory for an n-pixel composite, making it possible to s at different scales. UrbatJfb0Q constructs curl-free wavelet-
process larger in-core images. s to supplement the divergence-free wavel&éR92]. With both

Our method is highly parallelizable, which can be fully exploited the curl-free and divergence-free wavelets, Deriaz and PeDier [
on modern GPUs to achieve an order of magnitude speedup overP0§ propose a novel iterative algorithm to decompose a gener-
the CPU implementation. al vector eld into the sum of a curl-free part and a divergence-
free part by alternatively performing curl-free and divergence-free
projections. The problem with their work is that it is only appli-
cable to problems with periodic boundary conditions. Manson et
The Poisson equation arises from many areas and a lot of practi-al. [MPS0§ propose a wavelet method to reconstruct the indica-
cal algorithms are available to solve this problem. Direct methods tor function of a solid from an oriented point cloud. Farbmann et
such as Cholesky decomposition and Gaussian elimination are veryal. [FFL11] introduced a pyramidal convolution approach to solve
accurate at solving small-scale problems. However, for large-scalelinear translation-invariant problems wi@(n) time cost and &3n
problems, iterative methods are better choice, in items of compu- memory cost. Recently, Edge-avoiding wavelets are constructed us-
tation time and memory storage (e.g., direct methods would needing the lifting scheme inFat0g to avoid the dif culties in solv-
extra storage for the factored matrix). Simple iterative methods like ing large and poorly-conditioned systems of equations. Later, this
Jacobi and Gauss-Seidel are ef cient for each iteration, but they method is extended by applying the A-Trous wavelet transfdrm [
require many iterations to remove low-frequency errors. Jeschke SHL10, HDL11]. Compared to the lifting wavelet transform, the
et al. JCWO09 point out that the convergence rate of the Jacobi A-Trous wavelet transform hasn extra memory cost witk being
method can be accelerated by appropriately choosing the right s-the number of scales to transform. Note that edge-voiding wavelets
tencil size. Alternatively, the number of iterations can be greatly are designed to process scalar elds, we focus on handling vector
reduced by applying a multigrid schen®HMOQ], which has an elds.

O(n) time cost and 83n memory cost for 2D cases. The multigrid
method has also been widely used in gradient-domain composit-
ing, such as high dynamic range compressien/f/02] and real-

2. Related Work

3. Background

time painting MP0§]. Unfortunately, traditional multigrid method-  In this section, we rst review the problem of gradient-domain
s require multiple V-cycles, which are inef cient for solving large  compositing and its solution techniques. Then, we present a solver
linear systems with out-of-core data. Kazhdan and Hoph¢0B] based on curl-free cosine functions. Finally, we brie y discuss it-

address this problem by proposing a streaming multigrid solver, s disadvantages, which motivate us to use more general curl-free
which needs just two sequential passes over out-of-core data. Theirbases to overcome them.
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Notation. Scalars appear in lower cas&: and vectors in Please refer to Appendik for a derivation of the above equation.
bold lower casex. hu;vi and uv denote inner product and the Finally, uc andp are reconstructed by
component-wise multiplication af andv, respectively. A vector

0 ~ .
eld whose curl is zero is called a curl-free eld, which can be rep- P= ?‘ Oe(k)j k; Uc=r1 pr (6)
resented as the gradient of a scalar eld.e.uc=r p. We denote
L2(W) the vector space of aficalarfunctionsf(x) : W! R of - Discussion.Because curl-free cosine functions are orthogonal,
nite energy and.*(W) := L? L? the vector space of allector the solution is exact. However, since sine/cosine functions are glob-

elds over W. Both spaces are equipped with the Euclidean nor- al, the cosine/sine transform is time-consuming, whose best time
m. The curl-free space denoted BY(W) is the subspace formed  complexity isO(nlogn) in case that the size of signal is power-of-

by all the curl-free elds inL*(W). R, N andZ are used to de-  two. In this paper, we explore to uséorthogonal compactly sup-
note the set of all real numbers, natural numbers and integers, re-ported curl-free wavelets, whose transforms h&g) time com-
spectively. A 3-scaled and-shifted function off (x) is written as plexity.

fix:= f(2'x K) for j;k2 Z.
4. Our Solver using Curl-free Wavelets

3.1. Gradient-domain compositing Multiresolution analysis (MRA). A MRA of L2(R) is a se-
In gradient-domain compositing, a composite vector el quence of closed subspades; = sparij jxOk2z9j2z satisfying
L2(W) is generated by copying and blending the gradients of one Vj  Vj+1 and some other properties de ned iMl0g], where
or more registered images, which may not be a curl-free or conser-j (X) is referred to as acaling functionof the MRA. Wavelet s-

vative eld. Our purpose is to ndic 2 HY(W) that is closest ta paces W= spaify jx0k2 z are the complements such that\y{ =
by solving the minimization problem: Vi Wj, where indicates the direct suny.(x) is referred to as
1 z awaveletof the MRA. Then we have the wavelet space decompo-
min = ku uck®: (1) sition L?(R) = Vg j2n Wj. For simplicity we writef j oY j:kg
uc2 Hg(W £ W to denote the basis of2(R) generated by a MRA with associated

One solution of the problem is to solving a Poisson equation. Sub- scaling function and wavelgt ;y ).

stitutinguc = r p and using the Euler-Lagrange equation yield By tensor-products of "f.(R) = Vo j2n W, the wavelet s-

Dp=r1 u @) pace decomposition of the 2D function space %R?) = Vo |,

Wi, W, js W5, where0=(0;0);j1=(j1;0);j2=(0; j2);j3=

After discretizing the Poisson equation, direct or iterative solvers (jjll. jzl)zanjczjjll'3j2 ;N. The bas(e fu?uj:tlion(sjcl)f(y):Jipa(rij éigjgnd
can be used to solve it. W, = spariy;..xgfore2f 1,2;3g are de ned by tensor-products
Another solution is by projecting onto Hg(\l\o, if orthogonal of j jikiy jk:
bases ng(W) are given. As an example, we use the well-known Fok =1 okd okl ik = Y ikl okl
curl-free cosine functions to illustrate the basic idea. T I ~ Il 2
Yiek = okaY jzkerYjak = Y juklY jzike:

)

3.2. A solver using curl-free cosine functions Similarly, we writef] gi;Y k9 to denote the basis of(R?)
formed by above base functions.

Curl-free cosine functions.It's known that the set of cosine func-

tionsfj x = cogkyx) cogkyy)g is an orthogonal basis ofz(_W:

[0;p]%) with Neumann BCs, wherk = [k;;ko]" 2 N2. Then, the

curl-free cosine functions are de ned as

Notice that curl-free cosine functions are actually the gradients
of cosine functions. In one dimension, the derivativé ocdgkx)g
isf ksin(kx)g and either of them forms a basis o?(LO; p]) with
corresponding BCs. So in order to construct more general curl-free

ck=rjk= Kk g 3) wavelet bases, a crucial step is to nd two bases linked by differen-
tiation like cosine and sine functions. The existence of such pairs of
where bases is guaranteed by Lemarié-Rieusset's propositionR97.
sin(kyx) cos(koy) . @) The following English version is borrowed frordP09.
cos(kyx) sin(kzy) Proposition: Let fV{'g be a MRA of L%(R), with associated
Finally, we havef  ¢xgandf g, which are orthogonal bases of  scaling function and wavele( l;yl). Then, there exists a M-
Hg(vv) andLZ(W), respectively. RA ijOg of L2(R), with associated scaling function and wavelet

. 0.,,0 i
Curl-free cosine projection. With these bases, we take three (i %5y"), satisfying:

steps to obtain the closas of u as well as the scalar elg. First, (i 1)0(x) = 0(x) i O(X 1); (8a)
the coef cientsli = [Gx;ﬁy]T of u= §, (k) k are computed by 1.0 0
applying the sine and cosine transformsioThen, the coef cients (y?) =4y (9: (8b)
Gc of uc = &y le(k) ¢k are computed by projectinifk) ontok: Famous pairs o 1;y 1) and(j O;yo) satisfying Equationsi 8b)
. hk; G(k)i are B-splines of degreeandn 1, with corresponding wavelets
Oe(k) = kkk2 - ®) of vanishing moment mndm+ 1. These scaling functions and
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Figure 3: An illustration of our curl-free wavelet projection method to nd a seamless composition. From left to right: Given a registered
image, @A) a composite gradient eld is rst generated by copying and blending the gradients of the inBjdehié eld is then transformed

into the wavelet domains, where wavelet coef cients are orthogonally projected onto the curl-free wavelets to extract the wavelet coeffs. of
the seamless compositioB)( Finally, a fast inverse wavelet transform of the extracted coeffs. is taken to recover the compbgition (

Now we have obtained two wavelet badesc;, kg andf kg
for H(W) andL ?(W), respectively. Note that Equatior; (.0) are
similar to Equations3, 4). Figure6 illustrates wavelet functions
yjls:k and k.
Curl-free wavelet projection Pw. We take the same three step-
s as the curl-free cosine projection to compuige and p for
u?2 L2(W). First, we compute the wavelet coef cienfsof u =
F:qgurée 2: An illlzjtra:]iog ofdlsemarié-Rielusset'sdpropositi?t;. L)eft: 8edj,ak(je;k) .k by the wavelet transform. Second, we com-
The derivative (dashed red) of a B-spline of degree n (blue) can ~ i je-
uteuc by orthogonally projectin :k) onto 2e:
be expressed as the difference of two shifted B-splines of degreep c by g ypro ) Gjeik)
n 1(green). Right: The derivative of the former's wavelet with m h2le; fi(je; K)i
vanishing moments (blue) is equal to the latter's wavelet withim k2iek2
\égnllshlngAmoments (d?shed er)gé;to Zm(;lgléﬂlﬁﬂm scaled for Please refer to Appendik for a derivation of the above equation.
isplay). As an example, we plot 8dfand cd2:6. Finally, uc andp are reconstructed by

Gc(jerk) = (11

wavelets denoted by cdf+ 1):m were constructed by Cohen- p= & AO:K)j ok + & a a e(e; K)Yjoki Uc=T p: (12)
Daubechies-Feauveau iBDF92. For example, cdf® and cdf26 k € e K
satisfy Equations8a, 8b), whose scaling functions are 2nd-order Note thatp{0;k) = 0 if Neumann/periodic BCs are imposed. We
(quadratic) and 1st-order (linear) B-splines, respectively, and cor- will discuss how to set this value in the next section. Fig8re
responding wavelets have 5 and 6 vanishing moments, see Figuregives an intuitive description of our curl-free wavelet projection for
2. In [KHO8], the property of B-splines in EquatioB#) were used gradient-domain compositing.
to derive the streaming multigrid to solve the Poisson equagin ( Biorthogonality. Unlike curl-free cosine functions, compactly
where 2nd-order B-spllne§ were used. _In contrast, we use thg ProP-supported curl-free wavelets are biorthogonal bases. We cannot get
erty of wavelets in Equation8p) to derive a wavelet projection  ¢ri.free wavelets that are both compactly supported and orthog-
method without solving a linear system. onal [LR92, DP0Y. Although the loss of orthogonality can lead
Curl-free wavelets.Letf j é;k;y]l;kg andf j 8:k;y<j3:kg be a pair of toa _sacri ce_of accuracy, the gain of the compact suppo_rt prop-

bases of E([O; 1]) with periodic BCs satisfying Lemarié-Rieusset's erty IS O(n) "“?e to Com"_“‘e the wavegeF tran;form. Cor@denng
proposition. By Equation7), we get a basid] %-ki)’jl-kg of the dlsc_rgtlzay‘on error |s—25_>6 4 10 °in 8-bit/channel image

2 o e cool e compositing, it's worth making such a tradeoff between accuracy
L(W=[0:1]%) with periodic BCs, wherd = (1;1). Taking the 5.4 time. Our experiments show that the accuracy is suf cient for
derivatives of the basis and usi(‘jgé;k) = 0, we get the curl-free  gradient-domain compositing.

wavelets 1 T Time and Memory Complexity. The rst and third steps are the

cok="rJjok=[0;00"; most time-consuming iRw, which compute two forward wavelet

= ryl =de ©) transforms of1 = [ ux; uy]” and one inverse wavelet transformuaf ~

Clek Jeik Jeik: to recoverp. The wavelet transform is actually the convolution of
where 2t = [2/1*2;0T: 22 = [ 0; 212* 2T Qs = [ 211+ 2; 22+ 2|T gpq the input and the corresponding wavelet Itéils; gg. Because we
0 1 0 1 use compactly supported wavelets, the size of lters is small. For

= Yitkd Oko . . W= 1 00 C = y'il;kly 62;k2 : example, cdf® has 4 and 12 coef cients fdr andg, respective-
I 0 Lz oY joke o YinkY jzke ly. So the time complexity of the transform @(n). Furthermore,

Daubechies and Sweldens$99g show that any discrete wavelet

Cc 2017 The Author(s)
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transform can be decomposed into a nite sequence of simple |-
tering steps, called lifting steps. Their method called the lifting
wavelet transform not only reduces the computational complexi-
ty of the convolution-based wavelet transform by a factor of two,
but also can be taken in place with constant memory.

Thanks to the lifting wavelet transform, only two pieces of mem-
ory (each with sizen) are needed, which are rst used to store each
component ofu. After being transformed in place, one of them is
reused to store extracted wavelet coef cients Which is nally
transformed in place to recover Thus, the memory cost is2

Parallelism. Since the size of wavelet lIters is small and the
computation of each wavelet coef cient is independent, the wavelet
transform (also the lifting wavelet transform) is highly paralleliz-
able [TSP 08,vdLJR1]. Experiments show that our GPU imple-
mentation can achieve 20x speedup.

Boundary conditions. In gradient-domain compositing, Neu-

cients, respectively. The full-scale wavelet transformf a§ ob-
tained by recursively performing Equatiotd@ from fj tof;. The
inverse transform is done by recursively performing Equatiai)
fromf tofj.

Constructions of A and S.Here we only introduce the construc-
tion of the synthesis matri$. The construction oA is similar.S
consists of two blocksH andG. The assemblies dfl andG de-
pend on the domain and its boundary conditions over which scaling
functions and wavelets are constructed. For the dofaki has a
simple structure: The column¥ ;k) of H are shifted versions of
each other, as are the colungf(s; k) of G. For the interval =[0; 1]
with periodic BCs, théh( ;k) are circular-shifted versions of each
other, as arg( ;k). For | with Neumann/Dirichlet BCs, we need
to pay attention to the columns that intersect with the boundaries.
We use re ection and skew-re ection methods to enforce Neuman-
n and Dirichlet BCs, respectively. More speci cally, assume that
h(;0) andg( ;0) intersect with the left boundary df, the new

mann BCs are commonly used. But it's also reasonable to use Iters are obtained byn(m;0) = h(m;0) + h( m;0) for Neumann

periodic BCs and Lemarié-Rieusset's proposition is applicable to
L2[O; 1] with periodic BCs. In next section, we will introduce the
implementation of our method and the support for Neumann BCs.

5. Implementation

BCs anch(m;0)= h(m;0) h( m;0) for Dirichlet BCs. The same
process is also applied tif ;0). In the additional les, we give the
values ofS andA of cdf3:5 with Neumann BCs and cdf with
Dirichlet BCs for different scales.

Note on Ry. Here we give some details of the curl-free wavelet
projectionPy as listed in Algorithml. The input of the algorithm

The procedure of the curl-free wavelet projection is the same asis a composite gradient eld and the output is a composite. In Line

that of the curl-free cosine projection. Algorithtris an outline of

our implementation. The key part of the algorithm is gtendard
two-dimensional wavelet transforn$PS94. To obtain the stan-
dard wavelet transform of a two-dimensional signal, we rst apply
the one-dimensional wavelet transform to each row of the signal
(row transform), and then to each column of the row-transformed
signal (column transform). In the following, we brie y introduce
the one-dimensional wavelet transform based on convolution, for
the lifting wavelet transform we refer the reader to the excellent
course £S96.

One-dimensional wavelet transform.Let (j';¥) be the dual s-
caling function and dual wavelet ¢f ;y ). They satisfy the follow-
ing two-scale relations

i o1k= MK jaemYi k= a gmkj joem;
o - o (13)

i we= ahmBj jaemy i 1= a dmk)j joem
m m

wheref h;gg and f ﬁ;gg are called synthesis and analysis lters,
respectively. We will denote b = [h(m;k)] the matrix whose
(m;K) entry is h(m;k). By using block-matrix notation, we de-
ne the synthesis matrix aS = HjG and the analysis ma-
trix as A = HjG T, where H = [h(mK)];G = [g(mKk)] and

A = [h(m;Kk)]; & =[§(m;k)]. Given a one-dimensional sigrigl=

[fj (K)]", its one-scale wavelet transform and inverse are given by

h i
. fq
f= = Af;; 14a
f=sfi=s fi ll' (14b)
] ] dj I

wheref; 1 andd; i are called approximate and wavelet coef -

C 2017 The Author(s)
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1,2 and 4, WT2 (iWT2) represents the standard forward (resp. in-
verse) two-dimensional wavelet transform as describe8r§94,

in which the one-dimensional wavelet transform for each row and
column transform has been introduced in the above paragraphs. We
list the pseudocode of WT2 in Algorith® The rst parameter of
WT2 (iWT2) is a two-dimensional signal and the other two are
the wavelet types of the row and column transforms, respectively.
In this paper, we use cdf8 and cdf26 as(j L;y 1) and(j %;y9),
respectively. Line 3 is the computation of curl-free wavelet coef -
cientsuc as listed in Algorithm.

GPU Implementation. We implement both the convolution and
lifting wavelet transforms on GPU with CUDA. We nd that for
small images (<0.5 megapixel), the former is 70% faster than the
latter. But, for large images, the latter is 1012% faster than the
former. The reason is that the size of the former's lters is larger
than that of the latter's lters, which leads to more cache misses. On
the other hand, the convolution transform needs one extra memory.
We refer the reader tad’SP 08,vdLJR1] for more comprehensive
comparisons of these two kinds of transforms on GPU.

Non-power-of-two images.For non-power-of-two images, we
pad the input image of resolutiom= ( nx;ny) using the bound-
ary pixel values to a resolutiof®”; 2%) with J; = dlog 2(nx)e and
J» = dog2(ny)e. Thus, the gradients of the padded pixels are ze-
ros. In practice, we do not store them when preparing the composite
gradient eldu. In the wavelet transform stage, we need addition-
al memory to store wavelet coef cients of the padded parts.of
However, since we use compactly supported wavelets, the size of
the memory, which linearly depends on the size of Itéﬁq;gjg,
is small.

Setting the image meanFor Neumann/periodic boundary con-
ditions, the solution of the Poisson equation has an unconstrained
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Algorithm 1 Curl-free wavelet projectiorPw

Input: u =[ux;uy]" 2 L([0;1]%)
Output: p2 L2([0;1]2)

1: Ox = WT2(ux; cdf26; cdf3.5)
2: Gy = WT2(uy; cdf35;cdf26) . 2D wavelet transform ofyu
3: (ic = Po(0) . Algorithm?2
4: p= IWT2((c; cdf3:5;cdf3:5) . inverse 2D wavelet transform

2D wavelet transform ofw

Algorithm 2 Orthogonal projection i onto Z¢: Po

. wavelet coef cients ofi
. the size ofic

Input: @ =[ix; Gy] "
Input: n=(nx;ny)
Output: (¢
1: J=(dlog2(nx)e;dlog 2(ny)e) . d eis the ceil function.
2 J1=1050n0 10,J2= 10,15 19;0=f0g
(K = oL 2t 19K, = £0;1;052)2 g
In the following, is the Cartesian product of two sets.

:J1=J1 0;J2=0 JpJdz=J1 I
Kj,= Kj, OiKj,=0 Kj,:Kj, = Kj,
. fore2f 1;2;3gdo
forje2Jedo

Oc(je;k) = T2 500
end for
. end for

w N

Kj

forallk 2Kj, Equation(11)

©® Noahr

mean value, which leads to the coarsest coef cigi®; K) in Equa-
tion (12) is zero. A common method is to explicitly add the average
of the simply copy composition oHegiStered images to the solution.
Our approachisto s@(0;k) = A (* 2)™* % with A being the aver-
age. This is because the wavelet coef cients @-galue constant
image of size(2“"1; “"2) are all zeros except the coarsest coef cient
whose value i€ ( 2)%* %,

6. Experimental Results

The method proposed in this paper has been implemented on
desktop PC with an Intel i7-3930K processor with 122G RAM and
an Nvidia GTX 980 graphics card. All other algorithms used for
comparison are also tested on the same machine.

Two different gradient elds are employed as the input for our

method. Because we use second-order B-spline wavelets, the gra-

dient is discretized on a staggered-grid like nite difference, see
[KHO8].

Copying Gradients. Similar to the approach oKHO08], we gen-
erate a composite gradient eld by copying the gradients from the

a

Image RMS residual RMS error Max error

name Ours IM Ours SM Ours SM
Leaf 610 ° | 610 % | 210 8| 2105|210 2| 410 °
Flower 4103|410 °%|310°%|210°%| 2102|610 °
Leaf2 810 ° (810 | 310 % | 110 *|310 2| 410 %
Paper ower| 510 “ [ 3120 | 110 ® | 310 ®| 110 2 | 310 2
PNCPark |[810%|710°%|7120°%|310°%|710 2 |110 2
Edingburgh | 420 * | NA | 210 ®| 510 % | 410 2| 210 2
Redrock 310 3 NA NA NA NA NA

Table 2: Error and residual statistics of our method. The lastimage
is too large to practically obtain the ground truth by PCG.

Figure 4: Error distribution of the composition of a leaf. Middle:

The 60x-magni ed absolute errors of the generated seamless im-
age (left top). Right: The middle row of the errors. The lines of the
errors of RGB channels are marked using the corresponding color.

type eld is more challenge than that of copying gradients since it
may have complex structures. Two mixing gradient compositions
shown in Figurey and Figure8 demonstrate that our method works
well. They are vivider than the simply-copy compositions.

Now we demonstrate our method can achieve almost identical
results by numerical error analysis and visual comparisons.

Accuracy Analysis.A theoretical discussion on the reason why
our method provides approximate solutions is given in Appendix
A. Here we give a numerical accuracy analysis. We use two mea-
sures to numerically evaluate the accuracy: the relative residual
kr u Dpk=kr uk of the Poisson equation and the root-mean-
square (RMS) and maximal errors compared to ground truth so-
lutions solved by PCG with a tolerance factor of 16 when the
sizes of images are suitable.

We run a number of stitching examples. Our residuals and solu-
tion errors are listed in Tabl2. As seen in the table, most of re-
sults can achieve a RMS error around 40 2 and maximal error
around 10 2. Note that these errors are low frequency and actually
the difference of brightness. Figudeshows the error distribution

images and zeroing out the gradients across the seams. And themf the leaf case. In the right part of the gure, the middle row of the

this eld is employed as the input of Algorithrh. One composite
result generated by our method is shown in Figynehich demon-

strates that our method works well for large exposure and hue vari-

ations in the registered photos. Another result is shown in Figjure
to illustrate that our method works well for large images.

Mixing Gradients. The second type of input gradient eld is

errors is plotted, which illustrates that the errors are low-frequency.
Figure 8 shows that our method can achieve visually identical re-
sults for mixing gradient compositions. We refer the reader to our
additional materials for more visual comparisons of our results to
the ground truth solutions.

Now we demonstrate the ef ciency of our algorithm. Two oth-

generated by choosing the gradient values with largest absolute val-er algorithms are employed as comparison basis. The rst is the

ues among two or more imageg3GB03. The composition of this

CPU-based streaming multigrid (SM) methd¢H08] which uses

Cc 2017 The Author(s)
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Image Size Mem. (MB) CPU-Ver. Time (s) GPU-Ver. Time (ms)
name (MP) Ours SM | SM Ours SM SM ours IM
(Data + Solver)| (in) | (out) (I/O + Solver) (in) | (out)

Leaf 1.0 4+4=8 69| 83 0.11+0.13=0.24 0.6| 143 6 9
Flower 1.7 7+7=14 107| 123 0.17+0.23=0.40| 1.11| 2.26 10 41

Leaf2 2.0 8+8=16 135| 153 0.25+0.30=0.55| 2.29| 3.38| 12 39
Paper ower| 9.4| 37+38=75 564 | 169 1.18+1.38=256 | 5.93| 8.82| 49 126

PNC Park 27.3| 109 + 111 =220 1623| 130 3.75+3.97=7.72 | 18.37| 23.68| 142 189
Edingburgh | 47.8| 189 + 196 = 385 2853| 216 7.26 +7.44=14.7 | 32.56| 33.06| 254 NA
Redrock 83.3| 333 +337 =670 5003 | 143 | 14.78 +11.33=26.1152.17| 68.43| 451 NA

Table 1: A comparison of memory and run-time performance of our CPU version to the (in)-core and (out)-of-core streaming multigrid (SM)
with one V-cycle, and our GPU version to MaCann and Pollard's multigrid (JM). The results of MaCann and Pollard's mutigrid of last two
cases are not available since their method was implemented by OpenGL by which the maximal size of textures s gif26te8196

second-order B-splines for the Poisson equation and Gauss-Seidel
as the smoother thus has high convergence rate, and the second
method is the GPU-based multigrid (JM) proposed by Macann and
Poallard MP0g, who use Jacobi as the smoother for its high par-
allelism. All performance data, including the memory cost and run-
ning time are listed in Tabl#.

Comparison to SM.The SM method has in-core and out-of core
versions. The speed of the in-core SM is better than that of the out-
core SM, but at high memory cost. For a fair comparison, both SM
and our method use 16-hit oats to store the composition gradient
elds and run on a single CPU core. Our method has avefaye
and 4:1x speedups over the in-core and out-of-core SM, respec-
tively. As shown in the Tabld, our method has the fastest speed ) ) -
and lowest memory cost (including data term) for normal size (<20 Figure 5: Example result of copying gradient composition. Top:
megapixel) images. Our solver time is approximately the same as” 79633589 (27-megapixel) panorama from 7 photos, obtained
the I/O time. For very large images, the out-of-core SM has a better b_y our method. Bottom: Close-_ups, comparing our result to the
tradeoff between the time and memory cost. On the other hand, asSiMPly-copy composition. (Data is courtesy of Michael Kazhdan.)
shown in Table2, SM has better precision than ours, thus is more
suitable for applications with higher accuracy requirements.

In [KSH1(], the SM is to run on a distributed computer cluster

and parallelized using multiple threads within each node while pre-

serving the same precision. The distributed SM can achieve linear

speedup versus the number of nodes. As reported in their work, for

example, 46x and 65x speedups are achieved on the Edingburgh

and Redrock datasets, respectively, on a 4-node computer cluster

with each node equipped an 8-core CPU. Currently, our method is

parallelized using GPU and achieves20x speedup on a modern  Figure 6: An illustration of 2D wavelet functions. Lejt:J-13;k; Mid-

GPU. dle and Right: the x- and y-component of, .

Comparison to JM. MaCann and Pollard's multigrid (IJM)

solver is a variant of standard GPU multigrid solvers such as state-of-the-art methods both on CPU and GPU. Experiments show

[BFGS03 customized for gradient-domain painting thus suitable that it is a competitive tool for gradient-domain compositing of

for gradient-domain compositing, which has no pre-smoothing and g_pjt/channel images. However, our method is not applicable to

2 post-smoothing steps per V-cycle. To make a fair comparison, we gradient-domain applications with a high requirement of accuracy

run their solver until convergence to a solution with a comparable gy with irregular boundaries, such as gradient-domain high dynam-

residual like ours for each case, whose values we choose are listic range (HDR) compressiorF[W02], which requires high pre-

ed in Table2. Our method achieve averagex speedup over their  cision solutions otherwise "halo" artifacts will appear, and image

method. cloning [PGB03 which has arbitrary boundaries. Since our solver
is an in-core solver, the memory becomes the bottleneck when pro-

7. Conclusion and Future Work cessing gigapixel images. In this case, an out-of-core solver like the

. . . streaming multigrid or its distributed version is a good choice.
We have introduced a fast approximate curl-free wavelet projec- g g 9

tion method for gradient-domain compositing that outperforms the  There are two directions to extend our method. The rst one is

¢ 2017 The Author(s)
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Figure 7: A mixing gradient composition (2048x1024) of a "paci ¢ graphics" image with a leaf solved by our method. Note that the mixing
gradient composition (right) is vivider than the simply-copy composition (left).

guadtrees. IIACM SIGGRAPH 2007 Pape(2007), SIGGRAPH '07.
1,2

[BA83] BURTP. J., ADELSONE. H.: A multiresolution spline with ap-
plication to image mosaicsACM Trans. Graph. 24 (Oct. 1983), 217—-
236.2

[BCCZ08] BHAT P., QURLESSB., COHEN M., ZITNICK C. L.: Fourier
analysis of the 2d screened poisson equation for gradient domain prob-
lems. InProceedings of the 10th European Conference on Computer
Vision: Part Il (2008), ECCV '08, pp. 114-12&

[BFGS03] Borz J., FARMER I., GRINSPUN E., SCHROODERP.: S-
parse matrix solvers on the gpu: Conjugate gradients and multAGii

Figure 8: A mixing gradient composition (1024x1024) of a paper- Trans. Graph. 223 (July 2003), 917-9247

ower image (left top) with a leaf (left middle) solved by our method [BHMOO] BRIGGSW, L., HENSONV. E., MCCORMICK S. F.:A Mult

. . L., .E., .F. ulti-
(mldd!e column) and by I.:’.CG.as the grlound truth (right column). grid Tutorial: Second EditionSociety for Industrial and Applied Math-
The simply-copy composition is shown in the bottom of the left col-  ematics, Philadelphia, PA, USA, 200D.

umn. Our solution is visually identical to the ground truth. [CDF92] COHEN A., DAUBECHIES |., FEAUVEAU J.-C..: Biorthogonal

bases of compactly supported wavele@ommunications in Pure and

. . . Applied Mahtematics 4% (1992), 485-5604
to improve the accuracy and apply it to HDR compression. The PP 45 ( )
P06] DeRIAZ E., PERRIERV.: Divergence-free and curl-free wavelets

other one is to extend our in-core version to out-of-core to sup- (OF : ' . e EE

. . . . . . in two dimensions and three dimensions:application to turbulent ows.
port gigapixel image processing. Our method is ef cient for out- Journal of Turbulence 3 (Feb. 2006), 1-372
of-cqre data_ since it needs only one projection ?nd. thus. does rIOt[DP09] DERIAZ E., PERRIER V.: Orthogonal helmholtz decompostion
require multiple accesses over out-of-core data like iterative meth- =" arbitrary dimension using divergence-free and curl-free waveets.
ods. However, one challenge is that an out-of-core transposition of  plied and Computational Harmonic Analysis,25 (Mar. 2009), 249—
the data would be required when performing the wavelet transform,  269.3,4
which is expensive. We are also interested in applying our method [Ds98] DausecHIES I., SWELDENS W.: Factoring wavelet transform-

to real-time gradient-domain painting. s into lifting steps. Journal of Fourier Analysis and Applications 3
(1998), 2472694
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Appendix A: Derivations of Equations) and Equation11)

For a general derivation, léB¢;g andf B;g denote two general
bases oHZ(W) and L2(W), respectively. Equations3(4) or E-
quations 9, 10) are two types of such bases. A common important
property of these two types of bases is tBai = wB; for eachi,
see Equation3) with w =k and Equation9) with w = e,

Our goal is to solve Problent). Substituting the linear repre-
sentationss = 4; l(i)B; anduc = 3§ lic(i)Bg; into it, we get
. 1Z O i ~ - 2.
mins k& (0B Te(i)Bei)k* (15)
uc w i
Instead of directly solving this global problem, we solve a series of

sub-problems, i.e.
z

min 1
(i) 2
for eachi. SubstitutingBc;j = wB; into it and taking the derivative
w.r.t. Ue(i), the minimum is obtained atc(i) = hw;G(i)i =hw;wi.
From a geometrical view, this is the orthogonal projectiorii@j
ontow. Then, we get Equatios{whenw =k, and Equation1)
whenw = 2le,

KG(i)B;  Gc(i)Be;ik?;

. (16)

Discussion.If f B;g is orthogonal, by Parseval's identity, it can
be proved that the sub-problem is equal to the global one; otherwise
an approximate solution is obtained. Thus Equating the exact
solution since Equationd] is orthogonal and Equatiori]) is an
approximate solution since compactly supported Equati@ ié
not orthogonal. However, we note that Equati@d)(is also exact
if uis itself a curl-free vector eld. That is, ifi is the gradients of
an unknown image, we can exactly reconstruct the image.

Appendix B: Pseudocode of the 1D and 2D wavelet transform

The pseudocode of the standard 2D WT is listed in Algorithm
which takes the 1D WT listed in Algorithm for each row and
column of input.

Algorithm 3 2D wavelet transform: WT2
Input: S;n=(nx;ny)

a 2D signal, the size of S

Input: tx;ty the wavelet type of the row and column WT
Output: S

1 §(i;:) = WTL(S(i;:); tx; true) fori = 1::ny row WT

2: §(:;0) = WTL(S(;i);ty; true) fori= 1::ny column WT

Algorithm 4 1D wavelet transform: WT1

Input; f=F;t
Input: A;S
Input: isForward
Input: J= diog2(n)e
Output: f=f

a 1D signal or wavelet coeffs., the wavelet type
analysis & reconstruction matrix according to t
the forward/inverse WT

n is the size of s

1: if isFowardthen

2. fj=Afjforj=Ju1 forward WT, see Equatiofi4g
3: else

4. fj= Sfj for j= 1.1 inverse WT, see Equati¢f4b)
5. end if




