
Pacific Graphics 2017
J. Barbic and O. Sorkine-Hornung
(Guest Editors)

Volume 36 (2017), Number 7

Efficient Gradient-Domain Compositing Using an Approximate

Curl-free Wavelet Projection

Xiaohua Ren1 , Luan Lyu1, Xiaowei He2, Yanci Zhang†3 and Enhua Wu‡1,2,4

1University of Macau, 2State Key Lab. of CS, ISCAS & Univ. of CAS, 3 Sichuan University,
4Zhuhai-UM Science and Technology Research Institute

Figure 1: Red rock: A 19588×4457 (83-megapixel) panorama (top row) from 9 photos produced by our curl-free wavelet projection in 26.11s

on CPU and 0.45s on GPU. The bottom row is the extracted wavelet coefficients by our method. (Data is courtesy of Aseem Agarwala.)

Abstract

Gradient-domain compositing has been widely used to create a seamless composite with gradient close to a composite gradient

field generated from one or more registered images. The key to this problem is to solve a Poisson equation, whose unknown

variables can reach the size of the composite if no region of interest is drawn explicitly, thus making both the time and memory

cost expensive in processing multi-megapixel images. In this paper, we propose an approximate projection method based on

biorthogonal Multiresolution Analyses (MRA) to solve the Poisson equation. Unlike previous Poisson equation solvers which

try to converge to the accurate solution with iterative algorithms, we use biorthogonal compactly supported curl-free wavelets as

the fundamental bases to approximately project the composite gradient field onto a curl-free vector space. Then, the composite

can be efficiently recovered by applying a fast inverse wavelet transform. Considering an n-pixel composite, our method only

requires 2n of memory for all vector fields and is more efficient than state-of-the-art methods while achieving almost identical

results. Specifically, experiments show that our method gains a 5x speedup over the streaming multigrid in certain cases.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
algorithms

1. Introduction

Gradient-domain compositing is one of the most important tech-
niques in image processing, which has been widely used in appli-
cations such as seamless cloning [PGB03,JSTS06,FHL∗09], seam-
less stitching [Aga07,YHLX13,LDLM15], gradient domain paint-
ing [MP08]. Its basic idea is to find a composite image whose gra-
dients best match a composite gradient field extracted from two or
more registered images. This matching process is actually equiva-
lent to solving a Poisson equation. Although there exist a lot of al-
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gorithms that can be used to efficiently solve the Poisson equation,
gradient-domain compositing for large images still remains a chal-
lenge. One reason is that direct solvers like Cholesky factorization
and Gaussian elimination become impractical for large linear sys-
tem of equations. Iterative solvers like conjugate gradients are ap-
plicable to large sparse systems, but would require many iterations
to get the desired solution if no preconditioning technique, which is
usually non-parallelizable, is used. Another reason is that efficien-
t iterative solvers like traditional multgrid consume 8/3n memory
for two dimensions. As the number of pixels increases, solving the
linear system entirely in-core quickly becomes impossible.

According to Helmholtz-Hodge decomposition, any sufficiently
smooth vector field can be decomposed into the sum of a curl-free
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vector field and a divergence-free vector field for a simply con-
nected domain (like an image). Therefore, we can reformulate the
Poisson equation as a projection problem which projects the com-
posite gradient field onto a curl-free vector space. The key now be-
comes how can we find an appropriate curl-free basis for the curl-
free space so that the projection is both lightweight and efficient.
As we know, the most commonly used curl-free basis is the orthog-
onal basis based on cosine functions, which can lead to an accu-
rate Poisson-equation solution. Unfortunately, cosine functions are
global, and the complexity is O(nlogn). Its total computation cost
can be twice that of the modern iterative methods according to [M-
cC08, BCCZ08].

Considering the Poisson-equation solution will be rounded off
to integer numbers ranging from 0 to 255 in image applications, it
is actually not necessary to get a solution with high accuracy. This
motivates us to propose an approximate projection method to solve
the Poisson equation. Inspired by works in fluid dynamics [Ur-
b00, DP06], we use spline functions to form compactly support-
ed biorthogonal curl-free bases for the projection. Then, we show
that the projection can be highly parallelized on GPU with only
a small extra memory cost by applying the lifting wavelet trans-
form [SS96]. Compared to an exact projection based on orthogo-
nal bases, our approximate projection based on biorthogonal curl-
free bases is sufficient to get almost identical results for gradient-
domain compositing with the following advantages

• Our approximate projection has an O(n) time-complexity, which
only consists of three fast wavelet transforms.

• By applying the lifting wavelet transform, our method only needs
2n of memory for an n-pixel composite, making it possible to
process larger in-core images.

• Our method is highly parallelizable, which can be fully exploited
on modern GPUs to achieve an order of magnitude speedup over
the CPU implementation.

2. Related Work

The Poisson equation arises from many areas and a lot of practi-
cal algorithms are available to solve this problem. Direct methods
such as Cholesky decomposition and Gaussian elimination are very
accurate at solving small-scale problems. However, for large-scale
problems, iterative methods are better choice, in items of compu-
tation time and memory storage (e.g., direct methods would need
extra storage for the factored matrix). Simple iterative methods like
Jacobi and Gauss-Seidel are efficient for each iteration, but they
require many iterations to remove low-frequency errors. Jeschke
et al. [JCW09] point out that the convergence rate of the Jacobi
method can be accelerated by appropriately choosing the right s-
tencil size. Alternatively, the number of iterations can be greatly
reduced by applying a multigrid scheme [BHM00], which has an
O(n) time cost and 8/3n memory cost for 2D cases. The multigrid
method has also been widely used in gradient-domain composit-
ing, such as high dynamic range compression [FLW02] and real-
time painting [MP08]. Unfortunately, traditional multigrid method-
s require multiple V-cycles, which are inefficient for solving large
linear systems with out-of-core data. Kazhdan and Hoppe [KH08]
address this problem by proposing a streaming multigrid solver,
which needs just two sequential passes over out-of-core data. Their

method is later extended to handle spherical images in [KH10]
and to run on a distributed computer cluster with multiple nodes
in [KSH10].

Besides the multigrid methods, conjugate gradient methods al-
so converge much faster than the Jacobi or Gauss-Seidel method-
s, especially when a preconditioner is also used. Pérez et al. [PG-
B03] use the preconditioned conjugate gradient method for seam-
less cloning and Agarwala et al. [ADA∗04] for gradient-domain
compositing. Later, Agarwala [Aga07] solves a reduced linear sys-
tem by exploiting the fact the difference between a simple color
composite and its associated gradient-domain composite is largely
smooth. Szeliski et al. [SUS11] propose a similar technique using
low-dimensional B-splines to represent the offset field. Similarly,
Farbman et al. [FHL∗09] use mean value coordinates (MVC) de-
fined over an adaptive triangulation of the cloned region to interpo-
late the offset field at the region boundary or the seams. To accel-
erate the convergence rate, Szeliski [Sze90] proposes to use hierar-
chical basis functions as the preconditioner, which is later improved
in [Sze06]. Although these two methods are efficient at solving the
Poisson equation, they typically require more memory usage as dis-
cussed in [Aga07]. Besides, parallelizing the preconditioning step
is usually not an easy task (e.g., preconditioning via Gauss-Seidel
steps requires advanced techniques).

Over the last decades, wavelets have been widely used in im-
age processing, such as denoising, compression, fusion, etc. But
there are very few works that apply wavelets to improve the effi-
ciency of gradient-domain compositing. Burt and Adelson [BA83]
first propose to use multiresolution B-splines to hide the seam-
s at different scales. Urban [Urb00] constructs curl-free wavelet-
s to supplement the divergence-free wavelets [LR92]. With both
the curl-free and divergence-free wavelets, Deriaz and Perrier [D-
P06] propose a novel iterative algorithm to decompose a gener-
al vector field into the sum of a curl-free part and a divergence-
free part by alternatively performing curl-free and divergence-free
projections. The problem with their work is that it is only appli-
cable to problems with periodic boundary conditions. Manson et
al. [MPS08] propose a wavelet method to reconstruct the indica-
tor function of a solid from an oriented point cloud. Farbmann et
al. [FFL11] introduced a pyramidal convolution approach to solve
linear translation-invariant problems with O(n) time cost and 8/3n

memory cost. Recently, Edge-avoiding wavelets are constructed us-
ing the lifting scheme in [Fat09] to avoid the difficulties in solv-
ing large and poorly-conditioned systems of equations. Later, this
method is extended by applying the À-Trous wavelet transform [D-
SHL10, HDL11]. Compared to the lifting wavelet transform, the
À-Trous wavelet transform has s ·n extra memory cost with s being
the number of scales to transform. Note that edge-voiding wavelets
are designed to process scalar fields, we focus on handling vector
fields.

3. Background

In this section, we first review the problem of gradient-domain
compositing and its solution techniques. Then, we present a solver
based on curl-free cosine functions. Finally, we briefly discuss it-
s disadvantages, which motivate us to use more general curl-free
bases to overcome them.
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Notation. Scalars appear in lower case: x and vectors in
bold lower case: x. 〈u,v〉 and uv denote inner product and the
component-wise multiplication of u and v, respectively. A vector
field whose curl is zero is called a curl-free field, which can be rep-
resented as the gradient of a scalar field p, i.e. uc =∇p. We denote
L2(Ω) the vector space of all scalar functions f (x) : Ω → R of fi-
nite energy and L2(Ω) := L2 ×L2 the vector space of all vector

fields over Ω. Both spaces are equipped with the Euclidean nor-
m. The curl-free space denoted by H0

c(Ω) is the subspace formed
by all the curl-free fields in L2(Ω). R, N and Z are used to de-
note the set of all real numbers, natural numbers and integers, re-
spectively. A 2 j-scaled and k-shifted function of f (x) is written as
f j,k := f (2 jx− k) for j,k ∈ Z.

3.1. Gradient-domain compositing

In gradient-domain compositing, a composite vector field u ∈
L2(Ω) is generated by copying and blending the gradients of one
or more registered images, which may not be a curl-free or conser-
vative field. Our purpose is to find uc ∈ H0

c(Ω) that is closest to u

by solving the minimization problem:

min
uc∈H0

c(Ω)

1
2

∫
Ω
‖u−uc‖2. (1)

One solution of the problem is to solving a Poisson equation. Sub-
stituting uc =∇p and using the Euler-Lagrange equation yield

∆p =∇·u (2)

After discretizing the Poisson equation, direct or iterative solvers
can be used to solve it.

Another solution is by projecting u onto H0
c(Ω), if orthogonal

bases of H0
c(Ω) are given. As an example, we use the well-known

curl-free cosine functions to illustrate the basic idea.

3.2. A solver using curl-free cosine functions

Curl-free cosine functions. It’s known that the set of cosine func-
tions {ϕk = cos(k1x)cos(k2y)} is an orthogonal basis of L2(Ω =
[0,π]2) with Neumann BCs, where k = [k1,k2]

T ∈ N
2. Then, the

curl-free cosine functions are defined as

Φc,k =∇ϕk =−kΦk, (3)

where

Φk =

[

sin(k1x)cos(k2y)
cos(k1x)sin(k2y)

]

. (4)

Finally, we have {Φc,k} and {Φk}, which are orthogonal bases of

H0
c(Ω) and L2(Ω), respectively.

Curl-free cosine projection. With these bases, we take three
steps to obtain the closest uc of u as well as the scalar field p. First,
the coefficients ũ = [ũx, ũy]

T of u = ∑k ũ(k)Φk are computed by
applying the sine and cosine transforms of u. Then, the coefficients
ũc of uc = ∑k ũc(k)Φc,k are computed by projecting ũ(k) onto k:

ũc(k) =−〈k, ũ(k)〉
‖k‖2 . (5)

Please refer to Appendix A for a derivation of the above equation.
Finally, uc and p are reconstructed by

p = ∑
k

ũc(k)ϕk, uc =∇p. (6)

Discussion. Because curl-free cosine functions are orthogonal,
the solution is exact. However, since sine/cosine functions are glob-
al, the cosine/sine transform is time-consuming, whose best time
complexity is O(nlogn) in case that the size of signal is power-of-
two. In this paper, we explore to use biorthogonal compactly sup-

ported curl-free wavelets, whose transforms have O(n) time com-
plexity.

4. Our Solver using Curl-free Wavelets

Multiresolution analysis (MRA). A MRA of L2(R) is a se-
quence of closed subspaces {V j = span{ϕ j,k}k∈Z} j∈Z satisfying
V j ⊂ V j+1 and some other properties defined in [Mal08], where
ϕ(x) is referred to as a scaling function of the MRA. Wavelet s-
paces W j = span{ψ j,k}k∈Z are the complements such that V j+1 =
V j ⊕W j, where ⊕ indicates the direct sum. ψ(x) is referred to as
a wavelet of the MRA. Then we have the wavelet space decompo-
sition L2(R) = V0 ⊕ j∈N W j . For simplicity we write {ϕ0,k,ψ j,k}
to denote the basis of L2(R) generated by a MRA with associated
scaling function and wavelet (ϕ,ψ).

By tensor-products of L2(R) = V0 ⊕ j∈N W j, the wavelet s-

pace decomposition of the 2D function space is L2(R2) = V0 ⊕j1

Wj1
⊕j2

Wj2
⊕j3 Wj3 , where 0=(0,0), j1 =( j1,0), j2 =(0, j2), j3 =

( j1, j2) and j1, j2 ∈N. The base functions of V0 = span{ϕ0,k} and
Wje

= span{ψje,k} for e ∈ {1,2,3} are defined by tensor-products
of ϕ j,k,ψ j,k:

ϕ0,k = ϕ0,k1 ϕ0,k2 ,ψj1,k = ψ j1,k1 ϕ0,k2 ,

ψj2,k = ϕ0,k1 ψ j2,k2 ,ψj3,k = ψ j1,k1 ψ j2,k2 .
(7)

Similarly, we write {ϕ0,k,ψje,k} to denote the basis of L2(R2)
formed by above base functions.

Notice that curl-free cosine functions are actually the gradients
of cosine functions. In one dimension, the derivative of {cos(kx)}
is {−k sin(kx)} and either of them forms a basis of L2([0,π]) with
corresponding BCs. So in order to construct more general curl-free
wavelet bases, a crucial step is to find two bases linked by differen-
tiation like cosine and sine functions. The existence of such pairs of
bases is guaranteed by Lemarié-Rieusset’s proposition in [LR92].
The following English version is borrowed from [DP09].

Proposition: Let {V 1
j } be a MRA of L2(R), with associated

scaling function and wavelet (ϕ1,ψ1). Then, there exists a M-
RA {V 0

j } of L2(R), with associated scaling function and wavelet

(ϕ0,ψ0), satisfying:

(ϕ1)
′

(x) = ϕ0(x)−ϕ0(x−1), (8a)

(ψ1)
′

(x) = 4 ·ψ0(x). (8b)

Famous pairs of (ϕ1,ψ1) and (ϕ0,ψ0) satisfying Equations (8a, 8b)
are B-splines of degree n and n− 1, with corresponding wavelets
of vanishing moment m and m + 1. These scaling functions and
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Figure 3: An illustration of our curl-free wavelet projection method to find a seamless composition. From left to right: Given a registered

image, (A) a composite gradient field is first generated by copying and blending the gradients of the image. (B) This field is then transformed

into the wavelet domains, where wavelet coefficients are orthogonally projected onto the curl-free wavelets to extract the wavelet coeffs. of

the seamless composition (C). Finally, a fast inverse wavelet transform of the extracted coeffs. is taken to recover the composition (D).

Figure 2: An illustration of Lemarié-Rieusset’s proposition. Left:

The derivative (dashed red) of a B-spline of degree n (blue) can

be expressed as the difference of two shifted B-splines of degree

n−1 (green). Right: The derivative of the former’s wavelet with m

vanishing moments (blue) is equal to the latter’s wavelet with m+1
vanishing moments (dashed red) up to a multiplier 4 (not scaled for

display). As an example, we plot cdf3.5 and cdf2.6.

wavelets denoted by cdf(n + 1).m were constructed by Cohen-
Daubechies-Feauveau in [CDF92]. For example, cdf3.5 and cdf2.6
satisfy Equations (8a, 8b), whose scaling functions are 2nd-order
(quadratic) and 1st-order (linear) B-splines, respectively, and cor-
responding wavelets have 5 and 6 vanishing moments, see Figure
2. In [KH08], the property of B-splines in Equation (8a) were used
to derive the streaming multigrid to solve the Poisson equation (2),
where 2nd-order B-splines were used. In contrast, we use the prop-
erty of wavelets in Equation (8b) to derive a wavelet projection
method without solving a linear system.

Curl-free wavelets. Let {ϕ1
0,k,ψ

1
j,k} and {ϕ0

0,k,ψ
0
j,k} be a pair of

bases of L2([0,1]) with periodic BCs satisfying Lemarié-Rieusset’s
proposition. By Equation (7), we get a basis {ϕ1

0,k,ψ
1
je,k} of

L2(Ω = [0,1]2) with periodic BCs, where 1 = (1,1). Taking the

derivatives of the basis and using (ϕ1
0,k)

′

= 0, we get the curl-free
wavelets

Φc,0,k =∇ϕ1
0,k = [0,0]T,

Ψc,je,k =∇ψ1
je,k = 2je

Ψje,k,
(9)

where 2j1 = [2 j1+2,0]T,2j2 = [0,2 j2+2]T,2j3 = [2 j1+2,2 j2+2]T and

Ψj1,k =

[

ψ0
j1,k1

ϕ1
0,k2

0

]

,Ψj2,k =

[

0
ϕ1

0,k1
ψ0

j2,k2

]

,Ψj3,k =

[

ψ0
j1,k1

ψ1
j2,k2

ψ1
j1,k1

ψ0
j2,k2

]

.

(10)

Now we have obtained two wavelet bases {Ψc,je,k} and {Ψje,k}
for H0

c(Ω) and L2(Ω), respectively. Note that Equations (9, 10) are
similar to Equations (3, 4). Figure 6 illustrates wavelet functions
ψ1

j3,k and Ψj3,k.

Curl-free wavelet projection Pw. We take the same three step-
s as the curl-free cosine projection to compute uc and p for
u ∈ L2(Ω). First, we compute the wavelet coefficients ũ of u =

∑e ∑je
∑k ũ(je,k)Ψje,k by the wavelet transform. Second, we com-

pute ũc by orthogonally projecting ũ(je,k) onto 2je :

ũc(je,k) =
〈2je , ũ(je,k)〉

‖2je‖2 . (11)

Please refer to Appendix A for a derivation of the above equation.
Finally, uc and p are reconstructed by

p = ∑
k

p̃(0,k)ϕ1
0,k +∑

e
∑
je

∑
k

ũc(je,k)ψ
1
je,k, uc =∇p. (12)

Note that p̃(0,k) = 0 if Neumann/periodic BCs are imposed. We
will discuss how to set this value in the next section. Figure 3
gives an intuitive description of our curl-free wavelet projection for
gradient-domain compositing.

Biorthogonality. Unlike curl-free cosine functions, compactly
supported curl-free wavelets are biorthogonal bases. We cannot get
curl-free wavelets that are both compactly supported and orthog-
onal [LR92, DP09]. Although the loss of orthogonality can lead
to a sacrifice of accuracy, the gain of the compact support prop-
erty is O(n) time to compute the wavelet transform. Considering
the discretization error is 1/256 ≈ 4 · 10−3 in 8-bit/channel image
compositing, it’s worth making such a tradeoff between accuracy
and time. Our experiments show that the accuracy is sufficient for
gradient-domain compositing.

Time and Memory Complexity. The first and third steps are the
most time-consuming in Pw, which compute two forward wavelet
transforms of u = [ux,uy]

T and one inverse wavelet transform of ũc
to recover p. The wavelet transform is actually the convolution of
the input and the corresponding wavelet filters {h,g}. Because we
use compactly supported wavelets, the size of filters is small. For
example, cdf3.5 has 4 and 12 coefficients for h and g, respective-
ly. So the time complexity of the transform is O(n). Furthermore,
Daubechies and Sweldens [DS98] show that any discrete wavelet
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transform can be decomposed into a finite sequence of simple fil-
tering steps, called lifting steps. Their method called the lifting
wavelet transform not only reduces the computational complexi-
ty of the convolution-based wavelet transform by a factor of two,
but also can be taken in place with constant memory.

Thanks to the lifting wavelet transform, only two pieces of mem-
ory (each with size n) are needed, which are first used to store each
component of u. After being transformed in place, one of them is
reused to store extracted wavelet coefficients ũc, which is finally
transformed in place to recover p. Thus, the memory cost is 2n.

Parallelism. Since the size of wavelet filters is small and the
computation of each wavelet coefficient is independent, the wavelet
transform (also the lifting wavelet transform) is highly paralleliz-
able [TSP∗08, vdLJR11]. Experiments show that our GPU imple-
mentation can achieve ∼ 20x speedup.

Boundary conditions. In gradient-domain compositing, Neu-
mann BCs are commonly used. But it’s also reasonable to use
periodic BCs and Lemarié-Rieusset’s proposition is applicable to
L2[0,1] with periodic BCs. In next section, we will introduce the
implementation of our method and the support for Neumann BCs.

5. Implementation

The procedure of the curl-free wavelet projection is the same as
that of the curl-free cosine projection. Algorithm 1 is an outline of
our implementation. The key part of the algorithm is the standard

two-dimensional wavelet transform [SDS95]. To obtain the stan-
dard wavelet transform of a two-dimensional signal, we first apply
the one-dimensional wavelet transform to each row of the signal
(row transform), and then to each column of the row-transformed
signal (column transform). In the following, we briefly introduce
the one-dimensional wavelet transform based on convolution, for
the lifting wavelet transform we refer the reader to the excellent
course [SS96].

One-dimensional wavelet transform. Let (ϕ̃, ψ̃) be the dual s-
caling function and dual wavelet of (ϕ,ψ). They satisfy the follow-
ing two-scale relations

ϕ j−1,k = ∑
m

h(m,k)ϕ j,2k+m,ψ j−1,k = ∑
m

g(m,k)ϕ j,2k+m,

ϕ̃ j−1,k = ∑
m

h̃(m,k)ϕ̃ j,2k+m, ψ̃ j−1,k = ∑
m

g̃(m,k)ϕ̃ j,2k+m,
(13)

where {h,g} and {h̃, g̃} are called synthesis and analysis filters,
respectively. We will denote by H = [h(m,k)] the matrix whose
(m,k) entry is h(m,k). By using block-matrix notation, we de-
fine the synthesis matrix as S =

[

H|G
]

and the analysis ma-

trix as A =
[

H̃|G̃
]T

, where H = [h(m,k)],G = [g(m,k)] and
H̃ = [h̃(m,k)],G̃ = [g̃(m,k)]. Given a one-dimensional signal f j =

[ f j(k)]
T, its one-scale wavelet transform and inverse are given by

f̃ j =
[ f j−1

d j−1

]

= Af j, (14a)

f j = Sf̃ j = S
[ f j−1

d j−1

]

, (14b)

where f j−1 and d j−1 are called approximate and wavelet coeffi-

cients, respectively. The full-scale wavelet transform of f is ob-
tained by recursively performing Equation (14a) from f j to f1. The
inverse transform is done by recursively performing Equation (14b)
from f̃1 to f̃ j.

Constructions of A and S. Here we only introduce the construc-
tion of the synthesis matrix S. The construction of A is similar. S

consists of two blocks: H and G. The assemblies of H and G de-
pend on the domain and its boundary conditions over which scaling
functions and wavelets are constructed. For the domain R, H has a
simple structure: The columns h(·,k) of H are shifted versions of
each other, as are the columns g(·,k) of G. For the interval I= [0,1]
with periodic BCs, the h(·,k) are circular-shifted versions of each
other, as are g(·,k). For I with Neumann/Dirichlet BCs, we need
to pay attention to the columns that intersect with the boundaries.
We use reflection and skew-reflection methods to enforce Neuman-
n and Dirichlet BCs, respectively. More specifically, assume that
h(·,0) and g(·,0) intersect with the left boundary of I, the new
filters are obtained by h̄(m,0) = h(m,0)+ h(−m,0) for Neumann
BCs and h̄(m,0) = h(m,0)−h(−m,0) for Dirichlet BCs. The same
process is also applied to g(·,0). In the additional files, we give the
values of S and A of cdf3.5 with Neumann BCs and cdf2.6 with
Dirichlet BCs for different scales.

Note on Pw. Here we give some details of the curl-free wavelet
projection Pw as listed in Algorithm 1. The input of the algorithm
is a composite gradient field and the output is a composite. In Line
1,2 and 4, WT2 (iWT2) represents the standard forward (resp. in-
verse) two-dimensional wavelet transform as described in [SDS95],
in which the one-dimensional wavelet transform for each row and
column transform has been introduced in the above paragraphs. We
list the pseudocode of WT2 in Algorithm 3. The first parameter of
WT2 (iWT2) is a two-dimensional signal and the other two are
the wavelet types of the row and column transforms, respectively.
In this paper, we use cdf3.5 and cdf2.6 as (ϕ1,ψ1) and (ϕ0,ψ0),
respectively. Line 3 is the computation of curl-free wavelet coeffi-
cients ũc as listed in Algorithm 2.

GPU Implementation. We implement both the convolution and
lifting wavelet transforms on GPU with CUDA. We find that for
small images (<0.5 megapixel), the former is 70% faster than the
latter. But, for large images, the latter is 10 ∼ 12% faster than the
former. The reason is that the size of the former’s filters is larger
than that of the latter’s filters, which leads to more cache misses. On
the other hand, the convolution transform needs one extra memory.
We refer the reader to [TSP∗08,vdLJR11] for more comprehensive
comparisons of these two kinds of transforms on GPU.

Non-power-of-two images. For non-power-of-two images, we
pad the input image of resolution n = (nx,ny) using the bound-
ary pixel values to a resolution (2J1 ,2J2) with J1 = ⌈log2(nx)⌉ and
J2 = ⌈log2(ny)⌉. Thus, the gradients of the padded pixels are ze-
ros. In practice, we do not store them when preparing the composite
gradient field u. In the wavelet transform stage, we need addition-
al memory to store wavelet coefficients of the padded parts of u.
However, since we use compactly supported wavelets, the size of
the memory, which linearly depends on the size of filters {h̃ j, g̃ j},
is small.

Setting the image mean. For Neumann/periodic boundary con-
ditions, the solution of the Poisson equation has an unconstrained
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Algorithm 1 Curl-free wavelet projection: Pw

Input: u = [ux,uy]
T ∈ L2([0,1]2)

Output: p ∈ L2([0,1]2)
1: ũx = WT2(ux,cdf2.6,cdf3.5) ⊲ 2D wavelet transform of ux

2: ũy = WT2(uy,cdf3.5,cdf2.6) ⊲ 2D wavelet transform of uy

3: ũc = Po(ũ) ⊲ Algorithm 2

4: p = iWT2(ũc,cdf3.5,cdf3.5) ⊲ inverse 2D wavelet transform

Algorithm 2 Orthogonal projection of ũ onto 2je : Po

Input: ũ = [ũx, ũy]
T ⊲ wavelet coefficients of u

Input: n = (nx,ny) ⊲ the size of ũc

Output: ũc

1: J = (⌈log2(nx)⌉,⌈log2(ny)⌉) ⊲ ⌈·⌉ is the ceil function.

2: J1 = {0,1, ...,J1 −1},J2 = {0,1, ...,J2 −1},O= {0}
3: K j1 = {0,1, ...,2 j1 −1},K j2 = {0,1, ...,2 j2 −1}

⊲ In the following, × is the Cartesian product of two sets.

4: J1 = J1 ×O,J2 =O×J2,J3 = J1 ×J2
5: Kj1 =K j1 ×O,Kj2 =O×K j2 ,Kj3 =K j1 ×K j2

6: for e ∈ {1,2,3} do

7: for je ∈ Je do

8: ũc(je,k) =
〈2je ,ũ(je,k)〉

‖2je‖2 for all k ∈ Kje
⊲ Equation (11)

9: end for

10: end for

mean value, which leads to the coarsest coefficient p̃(0,k) in Equa-
tion (12) is zero. A common method is to explicitly add the average
of the simply copy composition of registered images to the solution.
Our approach is to set p̃(0,k) =A ·(

√
2)J1+J2 with A being the aver-

age. This is because the wavelet coefficients of a C-value constant
image of size (2J1 ,2J2) are all zeros except the coarsest coefficient
whose value is C · (

√
2)J1+J2 .

6. Experimental Results

The method proposed in this paper has been implemented on a
desktop PC with an Intel i7-3930K processor with 12G RAM and
an Nvidia GTX 980 graphics card. All other algorithms used for
comparison are also tested on the same machine.

Two different gradient fields are employed as the input for our
method. Because we use second-order B-spline wavelets, the gra-
dient is discretized on a staggered-grid like finite difference, see
[KH08].

Copying Gradients. Similar to the approach of [KH08], we gen-
erate a composite gradient field by copying the gradients from the
images and zeroing out the gradients across the seams. And then
this field is employed as the input of Algorithm 1. One composite
result generated by our method is shown in Figure 5, which demon-
strates that our method works well for large exposure and hue vari-
ations in the registered photos. Another result is shown in Figure 1
to illustrate that our method works well for large images.

Mixing Gradients. The second type of input gradient field is
generated by choosing the gradient values with largest absolute val-
ues among two or more images [PGB03]. The composition of this

Image RMS residual RMS error Max error
name Ours JM Ours SM Ours SM

Leaf 6·10−3 6·10−3 2·10−3 2·10−5 2·10−2 4·10−3

Flower 4·10−3 4·10−3 3·10−3 2·10−5 2·10−2 6·10−3

Leaf2 8·10−3 8·10−3 3·10−3 1·10−4 3·10−2 4·10−3

Paper flower 5·10−4 3·10−3 1·10−3 3·10−3 1·10−2 3·10−2

PNC Park 8·10−3 7·10−3 7·10−3 3·10−3 7·10−2 1·10−2

Edingburgh 4·10−3 NA 2·10−3 5·10−3 4·10−2 2·10−2

Redrock 3·10−3 NA NA NA NA NA

Table 2: Error and residual statistics of our method. The last image

is too large to practically obtain the ground truth by PCG.
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Figure 4: Error distribution of the composition of a leaf. Middle:

The 60x-magnified absolute errors of the generated seamless im-

age (left top). Right: The middle row of the errors. The lines of the

errors of RGB channels are marked using the corresponding color.

type field is more challenge than that of copying gradients since it
may have complex structures. Two mixing gradient compositions
shown in Figure 7 and Figure 8 demonstrate that our method works
well. They are vivider than the simply-copy compositions.

Now we demonstrate our method can achieve almost identical
results by numerical error analysis and visual comparisons.

Accuracy Analysis. A theoretical discussion on the reason why
our method provides approximate solutions is given in Appendix
A. Here we give a numerical accuracy analysis. We use two mea-
sures to numerically evaluate the accuracy: the relative residual
‖∇ ·u−∆p‖/‖∇ ·u‖ of the Poisson equation and the root-mean-
square (RMS) and maximal errors compared to ground truth so-
lutions solved by PCG with a tolerance factor of 10−12 when the
sizes of images are suitable.

We run a number of stitching examples. Our residuals and solu-
tion errors are listed in Table 2. As seen in the table, most of re-
sults can achieve a RMS error around 4×10−3 and maximal error
around 10−2. Note that these errors are low frequency and actually
the difference of brightness. Figure 4 shows the error distribution
of the leaf case. In the right part of the figure, the middle row of the
errors is plotted, which illustrates that the errors are low-frequency.
Figure 8 shows that our method can achieve visually identical re-
sults for mixing gradient compositions. We refer the reader to our
additional materials for more visual comparisons of our results to
the ground truth solutions.

Now we demonstrate the efficiency of our algorithm. Two oth-
er algorithms are employed as comparison basis. The first is the
CPU-based streaming multigrid (SM) method [KH08] which uses
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Image Size Mem. (MB) CPU-Ver. Time (s) GPU-Ver. Time (ms)
name (MP) Ours SM SM Ours SM SM

Ours JM
(Data + Solver) (in) (out) (I/O + Solver) (in) (out)

Leaf 1.0 4 + 4 = 8 69 83 0.11 + 0.13 = 0.24 0.6 1.43 6 9
Flower 1.7 7 + 7 = 14 107 123 0.17 + 0.23 = 0.40 1.11 2.26 10 41
Leaf2 2.0 8 + 8 = 16 135 153 0.25 + 0.30 = 0.55 2.29 3.38 12 39
Paper flower 9.4 37 + 38 = 75 564 169 1.18 + 1.38 = 2.56 5.93 8.82 49 126
PNC Park 27.3 109 + 111 = 220 1623 130 3.75 + 3.97 = 7.72 18.37 23.68 142 189
Edingburgh 47.8 189 + 196 = 385 2853 216 7.26 + 7.44 = 14.7 32.56 33.06 254 NA
Redrock 83.3 333 + 337 = 670 5003 143 14.78 + 11.33 = 26.11 52.17 68.43 451 NA

Table 1: A comparison of memory and run-time performance of our CPU version to the (in)-core and (out)-of-core streaming multigrid (SM)

with one V-cycle, and our GPU version to MaCann and Pollard’s multigrid (JM). The results of MaCann and Pollard’s mutigrid of last two

cases are not available since their method was implemented by OpenGL by which the maximal size of textures supported is 8196×8196.

second-order B-splines for the Poisson equation and Gauss-Seidel
as the smoother thus has high convergence rate, and the second
method is the GPU-based multigrid (JM) proposed by Macann and
Poallard [MP08], who use Jacobi as the smoother for its high par-
allelism. All performance data, including the memory cost and run-
ning time are listed in Table 1.

Comparison to SM. The SM method has in-core and out-of core
versions. The speed of the in-core SM is better than that of the out-
core SM, but at high memory cost. For a fair comparison, both SM
and our method use 16-bit floats to store the composition gradient
fields and run on a single CPU core. Our method has average 2.6x

and 4.1x speedups over the in-core and out-of-core SM, respec-
tively. As shown in the Table 1, our method has the fastest speed
and lowest memory cost (including data term) for normal size (<20
megapixel) images. Our solver time is approximately the same as
the I/O time. For very large images, the out-of-core SM has a better
tradeoff between the time and memory cost. On the other hand, as
shown in Table 2, SM has better precision than ours, thus is more
suitable for applications with higher accuracy requirements.

In [KSH10], the SM is to run on a distributed computer cluster
and parallelized using multiple threads within each node while pre-
serving the same precision. The distributed SM can achieve linear
speedup versus the number of nodes. As reported in their work, for
example, 4.6x and 6.5x speedups are achieved on the Edingburgh
and Redrock datasets, respectively, on a 4-node computer cluster
with each node equipped an 8-core CPU. Currently, our method is
parallelized using GPU and achieves ∼ 20x speedup on a modern
GPU.

Comparison to JM. MaCann and Pollard’s multigrid (JM)
solver is a variant of standard GPU multigrid solvers such as
[BFGS03] customized for gradient-domain painting thus suitable
for gradient-domain compositing, which has no pre-smoothing and
2 post-smoothing steps per V-cycle. To make a fair comparison, we
run their solver until convergence to a solution with a comparable
residual like ours for each case, whose values we choose are list-
ed in Table 2. Our method achieve average 2.5x speedup over their
method.

7. Conclusion and Future Work

We have introduced a fast approximate curl-free wavelet projec-
tion method for gradient-domain compositing that outperforms the

Figure 5: Example result of copying gradient composition. Top:

A 7963x3589 (27-megapixel) panorama from 7 photos, obtained

by our method. Bottom: Close-ups, comparing our result to the

simply-copy composition. (Data is courtesy of Michael Kazhdan.)

Figure 6: An illustration of 2D wavelet functions. Left: ψ1
j3,k; Mid-

dle and Right: the x- and y-component of Ψj3,k.

state-of-the-art methods both on CPU and GPU. Experiments show
that it is a competitive tool for gradient-domain compositing of
8-bit/channel images. However, our method is not applicable to
gradient-domain applications with a high requirement of accuracy
or with irregular boundaries, such as gradient-domain high dynam-
ic range (HDR) compression [FLW02], which requires high pre-
cision solutions otherwise "halo" artifacts will appear, and image
cloning [PGB03] which has arbitrary boundaries. Since our solver
is an in-core solver, the memory becomes the bottleneck when pro-
cessing gigapixel images. In this case, an out-of-core solver like the
streaming multigrid or its distributed version is a good choice.

There are two directions to extend our method. The first one is
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Figure 7: A mixing gradient composition (2048x1024) of a "pacific graphics" image with a leaf solved by our method. Note that the mixing

gradient composition (right) is vivider than the simply-copy composition (left).

Figure 8: A mixing gradient composition (1024x1024) of a paper-

flower image (left top) with a leaf (left middle) solved by our method

(middle column) and by PCG as the ground truth (right column).

The simply-copy composition is shown in the bottom of the left col-

umn. Our solution is visually identical to the ground truth.

to improve the accuracy and apply it to HDR compression. The
other one is to extend our in-core version to out-of-core to sup-
port gigapixel image processing. Our method is efficient for out-
of-core data since it needs only one projection and thus does not
require multiple accesses over out-of-core data like iterative meth-
ods. However, one challenge is that an out-of-core transposition of
the data would be required when performing the wavelet transform,
which is expensive. We are also interested in applying our method
to real-time gradient-domain painting.
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Appendix A: Derivations of Equation (5) and Equation (11)

For a general derivation, let {Bc,i} and {Bi} denote two general

bases of H0
c(Ω) and L2(Ω), respectively. Equations (3, 4) or E-

quations (9, 10) are two types of such bases. A common important
property of these two types of bases is that Bc,i = wBi for each i,

see Equation (3) with w =−k and Equation (9) with w = 2je .

Our goal is to solve Problem (1). Substituting the linear repre-
sentations u = ∑i ũ(i)Bi and uc = ∑i ũc(i)Bc,i into it, we get

min
ũc

1
2

∫
Ω
‖∑

i

(ũ(i)Bk − ũc(i)Bc,i)‖2. (15)

Instead of directly solving this global problem, we solve a series of
sub-problems, i.e.

min
ũc(i)

1
2

∫
Ω
‖ũ(i)Bi − ũc(i)Bc,i‖2, (16)

for each i. Substituting Bc,i = wBi into it and taking the derivative
w.r.t. ũc(i), the minimum is obtained at ũc(i) = 〈w, ũ(i)〉/〈w,w〉.
From a geometrical view, this is the orthogonal projection of ũ(i)
onto w. Then, we get Equation (5) when w=−k, and Equation (11)
when w = 2je .

Discussion. If {Bi} is orthogonal, by Parseval’s identity, it can
be proved that the sub-problem is equal to the global one; otherwise
an approximate solution is obtained. Thus Equation (5) is the exact
solution since Equation (4) is orthogonal and Equation (11) is an
approximate solution since compactly supported Equation (10) is
not orthogonal. However, we note that Equation (11) is also exact
if u is itself a curl-free vector field. That is, if u is the gradients of
an unknown image, we can exactly reconstruct the image.

Appendix B: Pseudocode of the 1D and 2D wavelet transform

The pseudocode of the standard 2D WT is listed in Algorithm 3,
which takes the 1D WT listed in Algorithm 4 for each row and
column of input.

Algorithm 3 2D wavelet transform: WT2

Input: S,n = (nx,ny) ⊲ a 2D signal, the size of S

Input: tx, ty ⊲ the wavelet type of the row and column WT

Output: S̃

1: S(i, :) = WT1(S(i, :), tx, true) for i = 1...ny ⊲ row WT

2: S̃(:, i) = WT1(S(:, i), ty, true) for i = 1...nx ⊲ column WT

Algorithm 4 1D wavelet transform: WT1

Input: f/f̃, t ⊲ a 1D signal or wavelet coeffs., the wavelet type

Input: A,S ⊲ analysis & reconstruction matrix according to t

Input: isForward ⊲ the forward/inverse WT

Input: J = ⌈log2(n)⌉ ⊲ n is the size of s

Output: f/f̃

1: if isFoward then

2: f̃ j = Af j for j = J...1 ⊲ forward WT, see Equation (14a)
3: else

4: f j = Sf̃ j for j = 1...J ⊲ inverse WT, see Equation (14b)
5: end if
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