
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 1

Projective Peridynamics for Modeling Versatile
Elastoplastic Materials

Xiaowei He, Huamin Wang, Member, IEEE and Enhua Wu, Member, IEEE

Abstract—Unified simulation of versatile elastoplastic materials and different dimensions offers many advantages in animation
production, contact handling, and hardware acceleration. The unstructured particle representation is particularly suitable for this task,
thanks to its simplicity. However, previous meshless techniques either need too much computational cost for addressing stability
issues, or lack physical meanings and fail to generate interesting deformation behaviors, such as the Poisson effect. In this paper, we
study the development of an elastoplastic model under the state-based peridynamics framework, which uses integrals rather than
partial derivatives in its formulation. To model elasticity, we propose a unique constitutive model and an efficient iterative simulator
solved in a projective dynamics way. To handle plastic behaviors, we incorporate our simulator with the Drucker-Prager yield criterion
and a reference position update scheme, both of which are implemented under peridynamics. Finally, we show how to strengthen the
simulator by position-based constraints and spatially varying stiffness models, to achieve incompressibility, particle redistribution,
cohesion, and friction effects in viscoelastic and granular flows. Our experiments demonstrate that our unified, meshless simulator is
flexible, efficient, robust, and friendly with parallel computing.

Index Terms—peridynamics, projective dynamics, position-based dynamics, elasticity, plasticity, viscoelasticity, granular flows.

F

1 INTRODUCTION

E Lastoplastic materials exist everywhere and can exhibit
a variety of complex behaviors. The dynamic modeling

of this process in a one-dimensional space is simple and in-
tuitive. However, if being extended to a higher-dimensional
space, the material deformation and plastic yielding will
become rather complicated due to the diversity of material
stiffness and geometric topology. How to find a simulation
method that can naturally handle various materials as well
as the topological changes has always been the focus of com-
puter graphics. While researchers have extensively studied
the simulation of different deformable bodies by various
models and tools, the ability to simulate them in a unified
way is still rather limited.

Unstructured particles are powerful in dealing with topo-
logical changes, but its application on simulating elasto-
plastic bodies is still limited. Previous research on meshless
simulation of deformable bodies has explored the use of
the generalized moving least squares method (GMLS) [1],
[2], the SPH method [3], and the local Petrov-Galerkin
method [4], [5]. Since these meshless techniques are based
on partial derivatives and the classical elasticity theory,
the results could be very sensitive to the underlying par-
ticle distribution. Besides, they also have the difficulty in
defining the partial derivative along the discontinuities. A
possible solution to overcome those difficulties is to apply
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the position-based dynamics [6], [7], which uses the differ-
ence between the deformed shape and the deformation-free
shape to drive unstructured particle motion. This method
is fast and robust, but it cannot produce many interesting
elastic material behaviors, especially the Poisson effect.

Recently, peridynamics has gained its popularity in mesh-
less simulation of discontinuous deformation, such as frac-
tures [8]. The original bond-based peridynamics model [9] as-
sumes that the force between two neighboring particles de-
pends on the two particles only. Silling and colleagues [10]
generalized this model later into state-based peridynamics, by
defining the force as a function of all of the particles in the
neighborhood. While existing peridynamics simulators have
demonstrated their potentials in elastoplastic simulation,
they typically have to use very small time steps as shown
in [11], making them inefficient and less attractive than they
might otherwise be.

Motivated by the recent success of peridynamics and
constraint-based techniques, we present a fast, robust, and
meshless solver under the state-based peridynamics frame-
work to simulate versatile elastoplastic materials. Since peri-
dynamics uses integrals rather than partial derivatives to
construct its dynamic equation, the property allows us to de-
sign a specific constitutive material model, under which the
simulator can be solved in a projective dynamics way [12],
[13]. Toward the development of our simulator, we made
the following technical contributions.

• Elasticity. We present an iterative method based
on implicit time integration, to efficiently simulate
our new constitutive material model. This method
can handle not only bulky bodies, but also thin shells
and rods.
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• Plasticity. We propose a novel plastic deforma-
tion technique for our peridynamics simulator, by
modifying reference positions to reflect permanen-
t shape changes. This technique is equipped with
the Drucker-Prager yield criterion formulated under
peridynamics, and a novel way to estimate reference
positions of the particles newly added into a neigh-
borhood.

• Viscoelastic and granular flows. We demonstrate
the ability of our simulator in animating viscoelas-
tic and granular flows. This is achieved by using
position-based constraints for incompressibility and
particle redistribution, and spatially varying stiffness
models for cohesion and friction.

The results demonstrate that our simulator can faithfully
simulate elastoplastic bodies, shells, rods, viscoelastic fluids,
and granular materials. Since the simulator handles all
these materials in a purely meshless framework, it becomes
straightforward to make material property transitions, as
shown in Figure 19. The simulator can robustly handle large
deformations and time steps, such as h = 1/30s in elastic
body simulation. Finally, the whole simulator is efficient and
it can be easily parallelized. So we expect to see a significant
performance improvement on the GPU in the near future.

2 OTHER RELATED WORK

Smoothed particle hydrodynamics. The use of smoothed
particle hydrodynamics (SPH) in the simulation of Newto-
nian fluids has been widely studied in computer graphics.
A detailed survey on this topic can be found in [14]. Mean-
while, researchers have explored the use of SPH in other
simulation problems as well. An early SPH-based technique
for animating deformable bodies was proposed by Desbrun
and Gascuel [15]. Later Pavia and colleagues [16] used SPH
to simulate non-Newtonian fluid flows, such as melting.
Solenthaler and collaborators [3] developed a unified SPH
model for simulating both fluids and deformable bodies.
To address the rotational invariance issue, Becker and col-
leagues [17] presented a co-rotational SPH formulation for
deformable bodies. Gerszewski and collaborators [18] ex-
tended a SPH solver to model elastoplastic materials. Al-
duán and Otaduy [19] used a predictive-corrective algorith-
m to calculate friction and cohesion forces in the simulation
of granular materials. Also under the SPH framework, Jones
and collaborators [20] introduced an embedded space ap-
proach for elastoplastic deformation, without thin features.

Particle-in-cell and its extensions. Particle-in-cell (PIC)
methods and its extensions, including the material point
(MPM) method [21], the fluid-implicit-particle (FLIP)
method [22] and the affine particle-in-cell method [23], are
commonly used in computer graphics to simulate granular
materials, such as sand and snow. Additionally, researchers
have also investigated the use of these methods in the
simulation of melting and solidifying materials [24], non-
Newtonian viscoplastic materials under hyperelastic model-
s [25], granular materials [26] and viscoelastic fluids, foams
and sponges [27]. The major difference between MPM and
our method is that MPM calculates derivative terms, e.g.,

the deformation gradient, on a background grid while our
method is purely Lagrangian and calculates all physical
quantities on particles. This feature makes MPM better suit-
ed for modeling volumetric objects. As far as we know, how
to model codimensional elastic objects like thin surfaces or
curves under a single MPM framework remains unclear
yet. Besides, it is also not an easy task for MPM to handle
extremely large deformations, e.g., recovering a bunny from
flat to its initial state. One remedy is by applying a hy-
brid method which integrates a Lagrangian framework into
MPM, as was done recently in [28], [29]. Fortunately, our
purely meshless framework can uniformly model materials
with different dimensions and handle large deformations
and timesteps.

Position based dynamics and projective dynamics. Po-
sition based dynamics (PBD) is different from traditional
simulation approaches in that it uses geometric constraints
rather than forces to model elastic behaviors. This character-
istics enables PBD methods to robustly use large time steps
in the simulation of mass-spring systems [6] and tetrahe-
dral meshes [7]. Later, Macklin and Müller [30] extended
the PBD idea to simulate incompressible fluid dynamics
by unstructured particles as well. Based on all of these
PBD methods, Macklin and colleagues [31] built a GPU-
based system using both structured particles (as meshes)
and unstructured particles. One problem associated with
PBD is that its result is controlled by the number of iter-
ations and the mesh resolution, rather than a model with
physical meanings. Bouaziz and collaborators [13] solved
this problem, by defining geometric constraints as strain
energies in a quadratic form. This helps them develop a fast
and robust projective dynamics simulator, which iteratively
solves a local constraint step and a global linear system step.
Recently, Tournier and colleagues [32] studied how to speed
up constrained simulation of stiff deformable objects, at the
expense of a larger system size.

3 BACKGROUND

LetH be a 3D spherical neighborhood of radius r centered at
the origin and Lm be the set of order-m tensors. State-based
peridynamics [10] defines an order-m state as a function:

A 〈·〉 : H → Lm. (1)

For example, given an point xi and any point xj in its
neighborhood, we have ξ = xj − xi ∈ H and we can
formulate a reference position vector state of particle i as:

X 〈ξ〉 = xj − xi, for ξ ∈ H. (2)

For simplicity, we drop subscript i from state notations. Let
yi = φ (xi) and yj = φ (xj) be the particle positions after
deformation, we can also formulate a deformation vector state
as:

Y 〈ξ〉 = yj − yi, for ξ ∈ H. (3)

Using X and Y, we can calculate the deformation gradient
tensor at xi as: F̄ = (Y ∗ X)(X ∗ X)−1. Here the tensor
product A ∗ B is defined as a reduction over the spherical
volume:

A ∗B =

∫
H
w 〈ξ〉A 〈ξ〉 ⊗B 〈ξ〉 dξ, (4)
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(a) MLS-based (b) Our method

Fig. 1. Beam test with three different timesteps (0.001s, 0.004s and
0.016s). Unlike the MLS-based method [20], which is only stable at a
small timestep 0.001s (a), our method is stable and consistent for all
three timesteps (b).

wherew 〈ξ〉 is a weight function and⊗ is the dyadic product
operator. Intuitively, this calculation is similar to how shape
matching [33] estimates linear transformation in a closed
form. The difference is that shape matching tries to directly
enforce rigid transformation in a position-based way, so it
fails to produce many interesting deformation effects, such
as Poisson effect. In contrast, state-based peridynamics uses
a constitutive model to compute a force vector state T from
Y, and then guide the motion of particle i as:

ρiÿi =

∫
H

{
Ti 〈ξ〉 −Tj 〈−ξ〉

}
dξ + b, (5)

in which ρi is the density at point xi and b represents body
forces. Peridynamic constitutive models can be designed
to match many hyperelastic constitutive models under the
classical elasticity theory, as shown in [10].

4 ELASTIC SIMULATION

The main question involved in peridynamics is how to con-
struct the constitutive model for elasticity. In this section, we
present the design of a constitutive model using a quadratic
elastic energy density function. This unique model allows
us to solve peridynamics under implicit time integration in
a projective dynamics fashion [12], [13], [34].

4.1 Projective Elastic Model Based on Integration

In continuum mechanics, the elastoplastic energy density
function based on partial derivatives can be defined as [21],

Ψ = µ ‖FE −RE‖2F +
λ

2
(JE − 1)

2
, (6)

where FE is the elastic part of the deformation gradient
tensor F, JE = det FE , RE is the rotation, λ and µ are the
Lamé parameters whose values may depend on the plastic
part of the deformation gradient. This definition works fine
for bulky solids. However, it has two limitations. One is
that we need polar decomposition and special treatment to
address singularity issues. Another reason is that it is not
suitable for modeling bending elasticity, which is handled
by a hinge-edge energy model in [13] instead. To address
above problems, we aim to devise a new elastoplastic energy
density function based on integration, i.e., integrate the
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Fig. 2. Illustration of a sphere being symmetrically mapped into an
ellipsoid.

energy stored on each pair of neighboring particles. Inspired
by the finite element theory, we assume that all of the
particles in a neighborhood are deformed by the same de-
formation gradient tensor F̄. In that case, the ideal position
of a neighboring particle xj can be obtained from a new
deformation vector state: Y∗ = F̄ξ, as shown in Figure 2.
According to peridynamics, the first term of Equation 6 can
be reformulated as

Ψdev =

∫
H
w 〈ξ〉

(
µ

∥∥∥∥ F̄ξ −Rξ

|X|

∥∥∥∥2
)
dξ (7)

where we have ignored the subscripts (·)E and (·)F . By
looking into Figure 2, the term

∥∥F̄ξ −Rξ
∥∥ actually mea-

sures the distance from the reference position xj to its
deformed position yj . If all the neighbors have already
be transformed to the current configuration, the value of∥∥F̄ξ −Rξ

∥∥ can be approximated as
∣∣∥∥F̄ξ∥∥− ‖Rξ‖∣∣ which

has the advantage to remove the need to precompute the
rotation matrix. Therefore, we can define our peridynamics-
based elastic energy density function as

Ψ =

∫
H
w 〈ξ〉

(
µEdev 〈ξ〉+

λ

2
Eiso 〈ξ〉

)
dξ, (8)

where Edev = (|Y∗| / |X| − 1)2, modeling the deviatoric
part of the deformation energy, Eiso = (|Y|/|X| − 1)

2,
modeling the isotropic part. The term Eiso is designed to
approximately model the second part of Equation 6 with
spring-like forces.

To derive the elastic force density from Edev, we can calcu-
late the following force vector state Tdev as:

Tdev = −µw∂E
dev

∂yi
= −2µw

|X|2

(
1− |X|
|Y∗|

)
Y∗

∂Y∗

∂yi
. (9)

When the neighborhood is small and the deformation field
is smooth, we have Y∗ ≈ Y. Based on this approximation,
we drop the remaining derivative and reorganize Equation 9
into:

Tdev ≈ 2µw

|X|2

(
Y − |X| (dirY∗)

)
, (10)

in which dirY∗ gives the normalized direction of Y∗.
The reason we formulate the elastic force vector state into
Equation 10 is to have two components: Y and dirY∗. The
deformation state Y is a linear function of yi and yj , while
dirY∗ depends on all of the particles in the neighborhood.
Similarly, we can also derive the elastic force density from
Eiso as

Tiso =
λw

|X|2

(
Y − |X| (dirY)

)
. (11)

The difference between Equation 11 and 10 is that the term
|X| (dirY) in Equation 11 only depends on yi and yj ,
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(a) Flattened shape (b) Recovered shape

Fig. 3. The bunny example. Our method can recover the bunny from its
degenerated shape as shown in (a), with a simple treatment to prevent
shape inversion .

(a) The result of the mass-spring system

(b) The result of shape matching

(c) The result of our method

Fig. 4. The armadillo example. Unlike the mass-spring system in (a) or
shape matching in (b), our method can properly handle both inverted
regions and the Poisson effect, as shown in (c).

while |X| (dirY∗) depends on all the neighbors. Therefore,
the direction of Tiso is along the line of yi and yj , which has
a similar effect as the normal stress in continuum mechanics.
Equivalently, Tdev has a similar effect as the shear stress.

Time integration. Based on implicit Euler integration, we
can discretize the update function of particle i into a nonlin-
ear system:

ρi(y
t+1
i − y∗i ) = h2

∑
j

Vj
(
Tt+1
i 〈ξ〉 −Tt+1

j 〈−ξ〉
)
, (12)

in which y∗i is the expected particle position under mo-
mentum and other operations, h is the time step, and Vj
is the volume for a particle j in the neighborhood Hi.
Similar to projective dynamics [13], we solve this nonlinear

system by iterating a local step and a global step. In the
local step, we use the current result to evaluate (dirY∗) 〈ξ〉
for every particle and its neighbor. In the global step, we
then treat these direction terms as constants and solve the
remaining linear system to get a new result for the next
iteration. Unlike many existing techniques, our method does
not need polar decomposition to extract the rotation matrix
in the iterations, so its local step is very inexpensive. If the
deformation is elastic only and the neighborhood does not
change over time, we can further speed up the global step
by pre-factorizing the constant system matrix, as did in [13].

Comparison to a MLS-based method. The difference be-
tween using Equation 8 and using the force formulas based
on MLS [20] is that Equation 8 avoids the need to explicitly
extract a rotation matrix for each particle. Although apply-
ing the singular value decomposition (SVD) for a small size
matrix to extract the rotation matrix is not a bottleneck when
done properly, it is preferable to avoid implementing SVD
since it is not necessary for achieving desired behaviors [27].
For our purely meshless method, the advantage of avoiding
SVD is twofold: our method can have a better stability for
simulation with large timesteps. Besides, it can increase the
diversity of elastoplastic materials our method can model.
By choosing the appropriate parameters, Figure 1 shows
that our method is able to create a similar result as the MLS-
based method [20] with a small timestep(∆t = 0.001s).
However, if we choose large timesteps, the MLS-based
method fails to create stable results, possibly because the
singular value decomposition is sensitive to the particle
distribution. Besides, rather than mapping a sphere into
an ellipsoid, our force formulas map a sphere into a more
complex and possibly discontinuous surface. Therefore, it is
easy for us to introduce other conditions to model more
complex elastoplastic materials, such as the modeling of
dry/wet granular materials demonstrated in Section 7. As
far as we know, it is not clear how Jones and colleagues’s
work [20] can be extended to simulate granular materials or
lower-dimensional objects, such as cloth.

Motivated by the finite element method [35], [36], we pre-
vent shape inversion by permuting the first two rows of
the deformation gradient tensor F̄ if its determinant is less
than 0. Figure 3 shows how this simple treatment can help
recover the bunny from its degenerated shape. Figure 4
also compares the result of our method with the results of
the mass-spring system and shape matching [33]. It shows
that the mass-spring system cannot fix inverted regions, as
expected. Shape matching does not have this issue, but it
fails to produce the Poisson effect as shown in Figure 4b. In
contrast, our method generates a more physically plausible
result as Figure 4c shows. Besides, we can also conveniently
simulate lower-dimensional objects, such as a cloth with
different bending stiffness by adjusting the value of µ, as
Figure 5 shows. We note that twisting deformation cannot be
simulated if a rod is represented by a single list of particles,
due to the singularity in F̄. Our solution is to expand a
rod by adding ghost particles, as shown in Figure 6a. Ghost
particles are treated in the same way as original particles,
except that they do not participate in collision handling.
Unfortunately, we cannot further separate bending defor-
mation from twisting deformation in rod simulation at this
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(a) µ=λ/10 (b) µ=λ/2 (c) µ=λ

Fig. 5. The cloth example. Our method can simulate different bending
stiffness behaviors, by adjusting the value of µ.

(a) Ghost particles rendered (b) Ghost particles hidden

Fig. 6. The rod example. Our method needs ghost particles to properly
simulate twisting deformation of a rod, where ghost particles are ren-
dered in grey while real particles are rendered in blue, as shown in (a).

time. So modifying µ will cause both bending and twisting
resistance to change.

4.2 Analysis and Evaluation

In this subsection, we will analyze the convergence and the
performance of our projective peridynamics method. We
will also discuss implementation details related to them.

Convergence condition. If we use only spring forces in
simulation, it is straightforward to see that |X| (dirY) is
the geometric projection of Y into a deformation-free space.
In that case, our method is identical to projective dynamics
and it is guaranteed to converge weakly as shown in [12],
[13]. This conclusion is no longer valid, when the direction
term contains |X| (dirY∗). Fortunately, if we consider the
nonlinear system in Equation 12 as a nonlinear optimization
problem for finding optimal yi, we can treat our method
fundamentally as a preconditioned gradient descent method
with the system matrix acting as the preconditioner. Since
the matrix is strictly diagonally dominant, it is positive def-
inite and we can guarantee the convergence of the method
by using a sufficiently small step length α(k):

y
(k+1)
i = y

(k)
i + α(k)

(
ŷ
(k)
i − y

(k)
i

)
, (13)

in which y
(k)
i is the particle position result in the k-th itera-

tion and ŷ
(k)
i is the solution to the linear system after the k-

th iteration. In our system, we use the standard backtracking
line search method to find α(k), by evaluating the Armijo-
Goldstein condition.

Performance evaluation. Given the proposed elastic sim-
ulation technique, our next question is: how should we get

Fig. 7. The convergence rates of the simulator using different meth-
ods for the global step, including direct solve, Jacobi solve, Jaco-
bi+Chebyshev solve, and position-based solve. The direct method runs
the fastest on the CPU, while the Jacobi+Chebyshev method is expected
to run the fastest on the GPU.

the linear system solved in the global step? Based on previous
research on projective dynamics, here we test three different
solvers on a single CPU core, including the direct solve
using Cholesky factorization [13], one Jacobi iteration, and
one Jacobi iteration with Chebyshev acceleration [34]. For
comparison purposes, we also evaluate the performance of
solving the global system in a position-based way. To do
that, we simply calculate particle positions suggested by
each neighborhood according to Equation 10, and then use
their averages to update particle positions in one global step.
Similar to [34], we define the error as the residual magnitude
of the nonlinear system in Equation 12. Figure 7 shows that
the direct solve performs the best on the CPU. This is not
surprising, since the particle neighborhood does not change
in elastic body simulation and the matrix factorization cost
can be removed from the running cost. However, when the
neighborhood changes as in plastic or fluid simulation, or
when the simulator runs on the GPU, the Jacobi+Chebyshev
method should outperform the others. So we choose it as the
default solver for the global step in our elastic simulation
component.

5 PLASTIC SIMULATION

To model plastic deformation and its hysteresis effect, many
existing techniques [21], [37] choose to extract a plastic
component from the deformation gradient and then accu-
mulate it over time. This approach fails to work, when the
deformation gradient is singular and the plastic component
is not unique [20]. It is not so compatible with the structure
of our method either, which relies heavily on the particle
positions, rather than the deformation gradient. So our idea
here is to directly modify the reference position state X over
time, which accounts for the permanent shape change under
plastic deformation. Let De and Dp be the elastic and plastic
displacement states decomposed from the co-rotational dis-
placement state: D = Y − R̄X = De + Dp, we can update
the reference position vector state as: X ← R̄X + Dp, in
which R̄ is the rotation matrix extracted from F̄.

To calculate the plastic displacement, we must decide the
yield criterion. Here we choose the Drucker-Prager yield
criterion: √

J2 ≤ A+BI1, (14)
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(a) Dropping under the gravity (b) Dripping started (c) Dripping ended

Fig. 8. The honey example. By redistributing the particles, our method can be extended to model homogeneous viscoelastic fluids, such as honey.

(a) Before collision (b) After collision

Fig. 9. The colliding bunny example. This example demonstrates the
permanent plastic deformation of two bunnies after they hit together.

where I1 is the first invariant of the Cauchy stress, J2 is
the second invariant of the deviatoric part of the Cauchy
stress, andA andB are constants. Under the Mohr-Coulomb
theory, we express A and B as functions of the internal
friction angle φ and the cohesion c:

A =
6c cosφ√

3 (3 + sinφ)
, B =

2 sinφ√
3 (3 + sinφ)

. (15)

The question is how this yield criterion can be applied
to determine the plastic displacement between any two
particles. Let e = |Y| / |X| − 1 be a scalar state describing
the Cauchy strain of the spring connecting the particles. We
decompose it into an isotropic part and a deviatoric part:

eiso =

∫
H
w 〈ξ〉 e 〈ξ〉 dξ, edev = e− eiso, (16)

and estimate I1 and J2 as:

I1 = −λeiso, J2 = µ

∫
H
edev 〈ξ〉 edev 〈ξ〉 dξ. (17)

Given I1 and J2, we evaluate whether the yield criterion is
violated. If so, we compute a set of two parameters:

{α, β} =


{

0,
√
J2−A−BI1√

J2

}
, if A+BI1 > 0,{

A+BI1
BI1

, 1
}
, otherwise,

(18)

and use them to calculate the plastic displacement state as:
Dp = αDiso + βDdev. Here Diso and Ddev are the isotropic
and deviatoric parts of D, respectively:

Diso =

∫
H
w 〈ξ〉D 〈ξ〉 dξ, Ddev = D−Diso. (19)

It is straightforward to see from Equation 18 that α, β ∈
[0, 1]. So Dp cannot exceed D, as in the real world. When
A + BI1 =

√
J2, the criterion is just violated and we

should have α = β = 0. If A + BI1 > 0, we assume
that plastic deformation exists only in the deviatoric part,
so α = 0. The transition happens when A + BI1 ≤ 0 and
the criterion is always violated. Since we cannot have β > 1,
we assume that plastic deformation occurs in the isotropic
part as well. These thoughts guide us to form the calculation
of α and β as shown in Equation 18. Figure 9 demonstrates
the effectiveness of our plastic model, where we have setup
this experiment with φ = 0 and c = 0.005.

New Particle Neighbors. For large plastic deformations,
the neighborhood of a particle will change. Theoretically
speaking, we should perform the new neighborhood search
on particle’s new rest positions. Since new rest positions
are never known, we choose to perform the neighborhood
search on deformed positions at the beginning of each time
step instead. Now we must update the reference position
state X, if particle xj is newly added into the neighborhood
of particle xi.

Given particle i’s old neighbors, we can use them to cal-
culate the deformation gradient F̄, and then estimate the
reference position of particle j by inverse transformation:

X 〈ξ〉 ≈ F̄−1(yj −yi) = (X ∗Y)(Y ∗Y)
−1

(yj −yi). (20)

This method, however, can cause newly added particles
to be projected onto a plane or a line, if F̄ is nearly
singular. To address this issue, we apply singular val-
ue decomposition on F̄ and clamp its singular values to
[1+eiso−‖edev‖ , 1+eiso+‖edev‖], which specifies the range
of acceptable stretching ratios. Here ‖·‖ is a magnitude
reduction operator applied on a scalar state [10]. After that,
we use the modified F̄ to perform the computation in Equa-
tion 20 instead. The evaluation of large plastic deformation
can be found in Section 7.

6 VISCOELASTIC FLUID SIMULATION

Homogeneous viscoelastic fluids, such as honey shown in
Figure 8, can be simulated by our method as well. To do
so, we define Lamé parameters as constants and we set the
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(a) δ = 0 (b) δ = 0.25 (c) δ = 0.5 (d) δ = 0.75 (e) δ = 1

Fig. 10. Dripping patterns. When using a larger δ, our particle redistribu-
tion approach can more effectively avoid tensile instability and preserve
thin features as shown in (e).

internal friction angle φ to zero. We enforce incompress-
ibility by applying position-based density constraints on
particles as did in [30] and implement an implicit version
of the viscous force [38]. In addition, we need to redistribute
particles to avoid tensile instability, which is a common
problem in particle-based fluid simulation [39]. One possible
solution is to re-sample materials with particles as [40].
However, re-sampling without losing the total mass is never
an easy task to do. In smoothed particle hydrodynamics
(SPH), researchers [41], [42] pointed out that particle redis-
tribution can be considered as minimizing ‖∇ρ‖2. So we
propose to formulate it as a positional constraint as well
and enforce it in a position-based way. Here we define the
particle distribution constraint on the i-th particle as:

Ci = ‖∇iρ‖2 = 0, (21)

in which∇iρ = m
∑
j ∇iWij ,m is the particle mass, andW

is the Spiky kernel function under the SPH framework [38].
According to [30], we calculate the moving distance in one
Newton iteration as:

τi =
Ci∑

l

‖∇lCi‖2 + ε
, (22)

where ε is a relaxation variable and ∇lCi is:

∇lCi =

{
∇i∇iρ · ∇iρ, if l = i,
−∇j∇iρ · ∇iρ, if l = j,

(23)

Given τi, we can then update the position of particle i by:

yi ← yi + δ
∑
j

τi + τj
2
∇iWij , (24)

in which δ ∈ [0, 1] controls the strength of particle redistri-
bution. We typically take 3 ∼ 10 iterations with Equation 24
to get a good particle distribution according to the average
error. Figure 10 demonstrates the effect of different δ on
the dripping pattern of a viscoelastic fluid. It shows that
by using a larger δ, particle redistribution can preserve thin
features better. To model the sticking behavior of the fluid to
the top ceiling, we seed ghost particles near the boundary
of the top ceiling and treat them similarly as those fluid
particles, except that the positions of ghost particles keep
fixed during the whole simulation.

7 SIMULATION OF GRANULAR MATERIALS

Unlike homogeneous materials, granular materials, such as
sand and snow, can exhibit complex deformation behav-
iors under different moisture, temperature, or granularity

(a) ϑ = 0.01 (b) ϑ = 0.1

Fig. 11. The wet sand example. By adjusting the water saturation coef-
ficient to control the magnitude of the cohesion stiffness, our simulator
can animate wet sands with different cohesion effects.

(a) Without our static friction mod-
el

(b) With our static friction model

Fig. 12. The 2D dry sand example. Applying frictional stiffness alone
cannot help the simulator get dry sands piled up properly as shown in
(a). Fortunately, our static friction model solves this problem as shown in
(b). Both are solved by 5 Jacobi iterations with Chebyshev acceleration.

conditions [43]. In this section, we will discuss common
characteristics of granular materials and how to achieve
their effects by our simulation method.

7.1 Cohesion and Friction Stiffness

When we simulate granular materials, we no longer use
constant Lamé parameters. Instead, we split them into the
sum of a friction stiffness kf and a cohesion stiffness kc, e.g.,
λ = kf + kc. Similar to [21], we define the friction stiffness
as a function of the particle density ρ:

kf(ρ) =

{
Kfe

Hf(ρ/ρ0−1), if ρ ∈ [ρ0,+∞),
0, otherwise,

(25)

in which ρ0 is the reference density,Kf is a reference friction,
and Hf is the hardening coefficient. Intuitively, Equation 25
means if the granular density is lower than the reference
density, the friction force should disappear. This treatment
is based on the fact that friction forces can occur only when
particles are in close contact.

Cohesion forces in wet granular materials are caused by
liquid capillary bridges among adjacent grains [43]. Since
it is difficult to integrate this theoretical concept into the
development of our simulator, we propose to build an
empirical relationship between the cohesion stiffness kc and
the particle density ρ. Inspired by the exponential capillary
force model [44], we define the cohesion stiffness kc as:

kc(ρ) =

 Kc, if ρ ∈ [ρ0,+∞),
Kce

Hc(1−ρ/ρ0), if ρ ∈ [ρ1, ρ0),
0, otherwise.

(26)

where Kc is the reference cohesion, Hc is an exponential
falloff coefficient, and ρ1 is the debonding density. In our
simulation, we define Hc and ρ1 as:

Hc = H0ϑ
−1/2, ρ1 = (1− bϑ)ρ0, (27)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2017.2755646

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XX 8

(a) φ = 15 (b) φ = 30 (c) φ = 45

Fig. 13. The piled dry sand example. Our simulator uses the internal friction angle to control how tall dry sands can get piled up.

(a) Colliding sands (b) Sand at rest

Fig. 14. The colliding sand example. Our static friction model does not
cause sticky artifacts, as this example shows.

in which ϑ is the water saturation, H0 is the reference
coefficient value, and b is a scaling variable typically set to
1. Figure 11 illustrates cohesion effects in the simulation of
wet sands, when using different water saturation ϑ values.

7.2 Static Friction

The iterative nature of our projective simulator allows us
to recalculate the stiffness kf in every iteration. However,
if not using a large number of iterations, it is difficult to
achieve static friction among dry sands as did in [45], which
solved a linear complementarity problem under unilateral
constraints. In fact, even if we use 100 iterations, dry sands
still cannot stack on each other as our experiment shows. To
address this issue, we propose to simply check if the friction
force is strong enough to push particle i back:(

yt+1
i − y∗i

)
·
(
yti − y∗i

)
≥ η

∥∥y∗i − yti
∥∥2, (28)

where η is a static friction coefficient typically set to 0.8 in
our experiment. If the condition in Equation 28 is satisfied,
we assume static friction happens and we set yt+1

i = yti . By
using this method, our simulator can effectively address the
sliding issue under static friction as shown in Figure 12b. We
note that although this method tries to eliminate the relative
motion between two particles, it does not cause particles
to be mutually locked as sticky artifacts, as the colliding
example shown in Figure 14.

8 RESULTS AND DISCUSSIONS

We implemented our system and test our examples on an
Intel Core i7-2600 3.4GHz processor. We use the OpenMP
library to parallelize the system and the Eigen library for
direct linear solve. For rendering viscoelastic fluids, we use
the particle skinning method [46] to reconstruct the fluid
surface mesh. Table 1 summarizes the statistics and the
timings of our examples.

Fig. 15. The falling sand example. This high-resolution example demon-
strates the ability of our simulation system in generating interesting
cracking patterns during the sand falling process.

Implementation. During our implementation, we use the
Z-index sort method [47] to renew particle neighborhoods,
every time particle positions get changed. In our exper-
iment, a neighborhood contains 30 neighbors. Depending
on the type of the material, the simulator selects and runs
any combination of three simulation components: elasticity,
plasticity, and particle redistribution. The convergence cri-
teria in our simulation uses both the residual error and the
maximum number of iterations. The system offers different
options for solving the global linear system, as described in
Subsection 4.2.

We implement both slip and no-slip solid boundary condi-
tions. To model slip boundary conditions, we simply project
particles out of the solids. To model no-slip boundary con-
ditions, we sample ghost particles around solid boundaries
as in [48] and simulate them together with other particles,
except that their positions are never updated. We typically
impose a non-slip boundary condition on the ground floor,
and slip boundary conditions on the rest of the solids.

To prevent particles from getting too close to each other,
we apply a repulsive distance constraint as in [31]. Nearby
particles can be easily detected from the particle neighbor-
hood renewed at the beginning of each time step. We note
that the renewed particle neighborhood should not cause
the reference position vector state to be updated, if the
deformation is elastic only.

An important strength of our method is that it is highly
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Name #Particles h (s) tn (ms) tρ (ms) td (ms) tp (ms) te (ms) tsum (ms)
Bunny (Figure 3) 25K 1/30 - - - - 36.2 41.1

Armadillo (Figure 4) 29K 1/30 - - - - 44.2 49.5
Honey (Figure 8) 72K 1/250 34.0 26.9 32.4 4.9 24.0 125.4

Two bunnies (Figure 9) 54K 1/250 - 22.1 - 4.1 23.7 53.6
Dry sand (Figure 14) 1,177K 1/500 481.0 340.2 - 81.7 124.5 1081.7
Wet sand (Figure 15) 1,325K 1/500 491.0 395.5 - 42.5 390.5 1492.3

Dambreak (Figure 16) 312K 1/500 127.1 122.5 - 19.3 118.2 412.0
Dripping (Figure 17) 564K 1/250 221.9 211.0 253.1 38.2 233.0 982.2
Coupling (Figure 18) 49K 1/1000 19.2 21.5 17.6 3.1 20.2 85.7

Dress (Figure 19) 25K 1/250 9.8 9.4 11.3 1.9 10.5 43.8
TABLE 1

Statistics and timings of our examples, The timings include the neighborhood update cost tn, the particle redistribution cost td, the incompressibly
enforcement cost tρ, the elastic solver cost te, the plastic solver cost tp, and the total cost per time step tsum. Note that ’-’ means the corresponding

part is not solved.

Fig. 16. The dambreak example. This example shows the interaction between a viscous liquid and wet sands.

(a) δ = 0 (b) δ = 0.5

Fig. 17. Another dripping example. This example demonstrates how a
bulk of viscoelastic material drips differently under the gravity with a
different value of δ.

Fig. 18. The liquid-cloth coupling example. Our method can uniformly
model the interaction between a cloth and a viscoelastic fluid.

compatible with GPU acceleration. Our fluid simulation
component, built upon the position-based framework, can
be easily implemented on the GPU. Although the elastic
simulation component needs to solve a linear system, it can
be implemented using the Jacobi+Chebyshev method on the
GPU as well, as suggested by Wang [34]. We expect to see a
significant performance gain, once we transfer our simulator
to the GPU in the near future.

Examples. Our examples demonstrate that the simulator

can effectively simulate a variety of elastoplastic materials.
Figure 13 shows the use of the internal friction angle to
control how tall dry sands can be piled up. Figure 15 reveals
the ability of our simulator in handling a large number
of particles and producing interesting cracking patterns as
sands fall. Figure 17 shows that the simulator can success-
fully present different behaviors of viscoelastic fluids by
adjusting the value of δ.

As a unified system, our meshless simulator can easily
model the interaction of different materials. For example,
Figure 16 demonstrates the interaction between a viscous
liquid and wet sands. In this example, we only solve elas-
ticity and plasticity for wet sands while solve incompress-
ibility for both materials. Figure 18 models the process of
an viscoelastic fluid falling onto a cloth. To prevent fluid
particles from entering the other side of the cloth, we take
an extra step to correct the positions of fluid particles by
checking the relative position of the fluid particles and the
cloth. Besides, our meshless simulator can easily handle the
transition among different material properties as well. The
bottom part of a dress shown in Figure 19a can be simulated
as a viscoelastic fluid first, and then as an elastic thin shell
again after solidification.

Limitations. The projective nature of our simulator requires
it to define the elastic constitutive model in a specific for-
m. This limits its ability in handling generic hyperelastic
constitutive models under the classical elasticity theory, as
in [10]. This also means the connection between existing
viscoelastic models and the viscoelastic fluids animated by
our simulator is not straightforward. Currently, we use the
particle redistribution process to achieve the surface tension
effect, which cannot be controlled separately. A potential
solution to this problem is to add ghost air particles outside
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(a) Before simulation (b) After simulation

Fig. 19. The dress example. Our simulator can simultaneously animate
the top part of the dress as an elastic shell and the bottom part as a
viscoelastic fluid .

of the free surface, for guiding particle redistribution only.
Our current system does not allow bending stiffness to be
controlled separately from twisting stiffness of a rod as well.
Although the system can robustly handle very large time
steps, such as h = 1/30s, it is usually not preferred to
do so, due to the resulting artificial damping, erroneous
friction, or tensile instability issues. Finally, current state-
of-art surface reconstruction methods have difficulties in re-
constructing thin features, such as filaments. To reconstruct
these features, we applied a post-processing to shrink the
mesh surface after reconstruction, which might cause some
volume-loss artifacts in certain examples.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate that the idea of peridynamics
and projective dynamics can be combined together to form
a novel simulation technique for unified particle simulation
of many elastoplastic materials, including granular material
behaviors. This technique is efficient and robust against
large deformations and time steps. But just like the original
projective dynamics technique, it is restricted by the types
of the materials it can handle.

The first thing listed in our future plan is to develop and test
our simulator on the GPU. We then would like to explore the
generalization of our constitutive model, to make it suitable
for producing more hyperelastic and viscoelastic material
behaviors. Currently, our elastic simulation component is
designed in a projective dynamics way, while our fluid
simulation component is designed in a position-based way.
So it will be interesting to know whether the algorithm
structure can be formulated in a more uniform style.
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