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Figure 1: Fluid mixing with different diffusion speeds. Under the Eulerian framework, our convection scheme simulates different fluid mixing
effects from immiscible to highly miscible. In this example, the diffusion speeds (D) from left to right are: 0, 0.005, 0.01, 0.02, and 0.04.

Abstract

The simulation of fluid mixing under the Eulerian framework of-
ten suffers from numerical dissipation issues. In this paper, we
present a mass-preserving convection scheme that offers direct con-
trol on the shape of the interface. The key component of this
scheme is a sharpening term built upon the diffusive flux of a user-
specified kernel function. To determine the thickness of the ide-
al interface during fluid mixing, we perform theoretical analysis
on a one-dimensional diffusive model using the Fick’s law of d-
iffusion. By explicitly controlling the interface thickness using a
spatio-temporally varying kernel variable, we can use our scheme
to produce realistic fluid mixing effects without numerical dissi-
pation artifacts. We can also use the scheme to control interface
changes between two fluids, due to temperature, pressure, or exter-
nal energy input. This convection scheme is compatible with many
advection methods and it has a small computational overhead.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Fluid mixing, miscible/immiscible fluids, diffuse in-
terface, phase field, fluid control.

1 Introduction

Fluid mixing is common in the real world. However, the simulation
of fluid mixing under the Eulerian framework [Park et al. 2008;
Kang et al. 2010; Bao et al. 2010; Nielsen and Østerby 2013] suf-
fers from numerical dissipation. As a result, the simulated interface

is often more blurred than it should be, causing rich mixing details
lost. A naı̈ve way to fix this problem is to sharpen the interface by
reversing the diffusion process. Unfortunately, the resulting sharp-
ening equation is numerically unstable and it is unclear how sharp
the interface should be at each time instant.

In this paper, we present a mass-preserving convection scheme to
simulate fluid mixing effects without numerical dissipation artifact-
s. The key component in this scheme is a sharpening term formulat-
ed by the use of a pre-defined kernel function. Using this scheme,
we can adjust the shape of the kernel function to easily control the
thickness of the simulated fluid interface. Based on the Fick’s law
of diffusion, we perform a theoretical study on the parameter of the
kernel function for an ideal diffusion case. The conclusion from this
study allows our convection scheme to formulate the parameter as
a spatio-temporally varying function, for simulating realistic fluid
mixing behaviors as shown in Figure 1. A controllable interface be-
tween two fluids also offers several other advantages for simulation
purposes. For example, we can formulate the interface thickness as
a function of the temperature, to simulate interface changes caused
by heat gain or loss. Meanwhile, we can simulate fluid stratifi-
cation by reducing the interface thickness over time, as shown in
Figure 11. For animation production, artists can use our scheme to
directly control the interface smoothness, which is not possible in
the past due to numerical dissipation.

Our contributions in this paper are:

• A convection scheme with controllability on the interface
thickness, by using a pre-defined kernel function.

• Theoretical analysis on the thickness of a diffusing interface,
based on the Fick’s law of diffusion.

• A simple method to ensure mass conservation, by distributing
surplus mass in one grid cell to others.

Our convection scheme is compatible with many advection methods
and it has a small computational overhead.

2 Related Work
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Immiscible flow. During the past decade, varieties of methods
have been proposed to simulate immiscible flows with sharp inter-
faces. Under the Eulerian framework, early works on fluid simu-
lation are focused on single phase flows such as free-surface water
[Foster and Fedkiw 2001; Enright et al. 2002] based on the level
set method. Hong and Kim [2005] studied incompressible viscous
multi-phase fluids and used the particle level set method for surface
tracking. Based on the similar idea, Losasso et al. [2006] devel-
oped a more generic approach to simulate multiple phases. An al-
ternative way to simulate immiscible flows is the Volume-of-Fluid
(VOF) method, which uses volume fraction to tracking material for
each phase [Hirt and Nichols 1981]. Other researchers used parti-
cles to track the fluid in an Eulerian grid [Zhu and Bridson 2005].
Recently, Boyd and Bridson [2012] extended the FLIP method to
handle two-phase flows.

Miscible flow. To create miscible effects, Zhu and collabora-
tors [2006; 2007] studied using the Lattice Boltzmann Method (LB-
M) to simulate miscible flows. Park and colleagues [2008] extend-
ed LBM to efficiently handle both miscible and immiscible flows,
but their method suffers from volume loss. To overcome the lim-
itations of LBM, Kang and collaborators [2010] and Bao and col-
leagues [2010] used volume fraction to model both miscible and
immiscible fluids, and they successfully enforced incompressibility
on multiple miscible fluids. Our work is aimed at addressing nu-
merical dissipation and interface diffusion/sharpening, by providing
direct control on the interface thickness.

Advection method. In Eulerian methods, the advection step
is important to simulation robustness and accuracy. To use large
time steps, Stam [1999] propose a semi-Lagrangian method to
trace the material backward along the streamline. This method
is robust and easy to implement, but it suffers from volume loss.
To improve the accuracy, Kim and colleagues [2005] integrated
the Back and Forth Error Compensation and Correction (BFEC-
C) scheme into semi-Lagrangian advection, to reduce dissipation
and diffusion in fluid simulation. Song and collaborators [2005]
applied constrained-interpolation-profile-based advection and con-
verted potentially dissipative cells into Lagrangian droplets or bub-
bles. Mullen and colleagues [2007] used an upwind scheme
based on the Godunov piecewise-constant approximation to con-
serve the total volume. To improve quantity conservation and nu-
merical stability when using large time steps, Lentine and col-
leagues [2011a; 2011b] proposed a conservative semi-Lagrangian
advection method. Chentanez and Múller [2012] improved this
method for parallel computing on GPU. The convection scheme de-
veloped in this work is compatible with many advection methods.

Phase-field methods. Our work is also relevant to the phase-
field method, a common technique used in computational physics
to model complex multi-phase effects, such as solidification [Boet-
tinger et al. 2002] and phase separation [Badalassi et al. 2003]. The
basic idea behind the phase field method is to model the interface
implicitly using a scalar phase field. Ding and colleagues [2007]
studied using this method to simulate incompressible two-phase
flows with large density ratios. While their technique conserves
mass, the fourth-order derivative term in the Cahn–Hilliard equa-
tion makes it difficult to implement numerically. To solve this
problem, Sun and collaborators [2007] developed a generic way to
track sharp interface using the Allen–Cahn equation [1976] without
considering mass conservation. Our method is also relevant to the
Allen–Cahn equation, and we are interested in interface control for
two-phase fluids of different mixing effects.

Algorithm 1 Convection Update(∆t)

. Solve the advective flow u
Advect the velocity field u;
Apply viscosity on u;
Add gravity and surface tension forces to u;
Perform pressure projection on u;

. Perform convection with the diffuse flow ∇ · J
Advect the diffusion coefficient field w;
Update w by the diffusion model; (Equation 12)
Advect the volume fraction field φ; (Equation 13)
Sharpen the volume fraction field φ; (Equation 14)
Apply diffusion on φ; (Equation 15)
Perform volume fraction correction on φ; (Section 4.2)

3 System Overview
Suppose that the overall volume does not change when one fluid
is dispersed into another, we define the volume fraction of the dis-
persed fluid in an infinitesimal volume as φ (for φ ∈ [0, 1]), which
is a function of the spatial domain. We perform density convection
by updating φ using both advection and diffusion:

∂φ

∂t
+ u · ∇φ − ∇ · j = 0, (1)

in which u is the advective velocity field and j is the diffusive flux.
Based on Equation 1, we propose to formulate our system in two
processes as Algorithm 1 shows. In the first process, the system
solves the two-phase advective flow. Similar to many single-phase
systems, it calculates velocity advection, applies viscosity, adds ex-
ternal and surface tension forces, and finally performs pressure pro-
jection. The outcome of this process is the advective velocity field
u. In the second process, the system uses u to calculate density ad-
vection, and applies a sharpening step and a diffusion step. At the
end of the second process, the system performs volume correction
to ensure that φ ∈ [0, 1] everywhere.

4 Two-Phase Diffusive Flow
To model two-phase diffusive flow, the key question is how to for-
mulate the diffusive flux j. A straightforward way is to assume that
j is linearly proportional to the gradient of the volume fraction, so
j = α∇φ, in which α controls the flux magnitude. Theoretically,
when α > 0, the two fluids will be gradually mixed together until
φ becomes constant over the whole domain. Otherwise, if we con-
sider the diffusion process backward, we may sharpen the interface
between two fluids as well by α < 0. Unfortunately in practice, we
cannot control fluid mixing by modifying α for numerical reasons.
When α > 0, numerical dissipation introduced by density advection
will cause the two fluids mixed faster than they should be, as shown
in Figure 2; and when α < 0, Equation 1 becomes unstable.

To provide controllability on the diffusion and its inverse process,
we propose to split the diffusive flux into a diffusive term and a
sharpening term: j = αjd + βjs, in which α and β are two nonneg-
ative coefficients adjusting the magnitudes of these two terms. If
α > β, the two phases will be mixed gradually until the saturation
density is reached everywhere. Otherwise, if the two phases are
over-dispersed (α < β), the two phases will be separated. Since we
plan to control the thickness of the interface directly, we treat the
interface under control as a dynamic equilibrium state, in which the
diffusive term and the sharpening term are balanced. So α = β.

The main question is how do we determine js? Our idea is to de-
fine the desired shape of an interface by a kernel function. Here
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(a) [Stam 1999] (c) [Lentine et al.2011](b) [Mullen et al. 2007]
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Figure 2: Convection results using different advection methods. By
providing direct control on the interface, our method can prevent
the interface from being smeared out due to numerical dissipation.

we choose the function proposed by Boettinger and collabora-
tors [2002] under the diffuse interface model:

φ(d) =
1
2

[
1 + tanh

(
d

2w

)]
, (2)

in which d is the signed distance to the central line of the front and
w is a diffusion coefficient. A nice feature of this interface is that
we can formulate ‖∇φ‖ without d:

‖∇φ‖ =
∂φ

∂d
=
φ (1 − φ)

w
. (3)

So we can model the sharpening flux js as:

js =
φ (1 − φ)

w
n, (4)

which is equivalent to js = ∇φ when the interface reaches the equi-
librium state. Here n =

∇φ

‖∇φ‖
denotes the direction for the sharpening

flux. Combining jd and js together into j, we get:

∂φ

∂t
+ u · ∇φ = α

[
∇2φ − ∇ ·

(
φ (1 − φ)

w
n
)]
, (5)

in which α is now a control magnitude constant. Intuitively, Equa-
tion 5 measures the diffusive flux calculated by the current inter-
face and the diffusive flux calculated by a kernel-shaped interface.
It then uses their difference to guide the diffusive flow, until the de-
sired interface thickness is reached. The parameter α controls the

(a) w = 2h (b) w = h (c) w = h/2

Figure 3: The effect of w. By using different diffusion coefficient
w, we can adjust the interface thickness in an equilibrium state.

speed of this process. According to [Sun and Beckermann 2007], α
should be a function of w and umax. For simplicity, we use α = h in
our experiment, in which h is the grid cell size.

Using Equation 5, we can modify w to control the interface width as
Figure 3 shows. We typically set w ∈ [h/2,+∞). A larger w causes
a blurred interface. Increasing w causes the fluids to mix from low
miscibility to high miscibility. In the extreme case when w goes to
infinity, Equation 5 simply diffuses the fluid over the whole domain
until the mixture becomes homogeneous.

4.1 Determining the Diffusion Coefficient

As we gain the ability to control the interface thickness using our
convection scheme, the immediate question next is: how can we
determine the interface thickness in the fluid mixing process? Since
the thickness is controlled the diffusion coefficient w, essentially we
need to know how w should vary during fluid mixing. To answer
this question, we perform theoretical analysis on a purely diffusive
flow based on the Fick’s law of diffusion.

Let the sharp interface between two fluids be defined by the Heavi-
side function at time t = 0:

φ (x, 0) = H (x) =

{
0, x < 0
1, x ≥ 0 , (6)

we solve the diffusion equation φt = D2∇2φ., in which D is the
diffusion speed. For simplicity, we assume that there is no density
advection. When D is constant, we get the analytical solution as:

φ (x, t) =
1

2D
√
πt

∫ ∞

−∞

H (ξ) e−(x−ξ)2/4D2tdξ. (7)

Since Equation 7 is similar to Gauss error function erf, next we can
simplify it into:

φ (x, t) =
1
2

[
1 + sgn (x) erf

(
|x|

2D
√

t

)]
, (8)

where sgn(x) is the sign of x. This function monotonically in-
creases from 0 to 1. If we assume that the interface is defined as
φ ∈ (0.05, 0.95), we can calculate the interface thickness as:

W = x|φ=0.95 − x|φ=0.05 = 4D
√

t · erf−1 (0.9) . (9)

Meanwhile, the interface thickness from φ = 0.05 to φ = 0.95
should satisfy W = 3

√
2w when using our controllable interface

model, according to [Sun and Beckermann 2007]. So we know:

w =
2
√

2
3

D
√

t · erf−1 (0.9) . (10)

Equation 10 shows that w should be a linear function of
√

t, to
produce ideal diffusive effects. Figure 5 verifies the correctness of
our model, when we apply it to simulate this 1D example.
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Figure 4: A 1D diffusive flow example. We define the interface
between two fluids as the interval from φ = 0.05 to φ = 0.95.

0

0.5

1

0.0

0.5

1.0

0

0.5

1

0

0.5

1

0

0.5

1

t=0s

t=1s

t=2s

Analytic 
solution

Our 
method

Figure 5: A comparison example. This example shows that by
defining w using Equation 10, the simulation result of our control-
lable interface model matches well with the analytic solution.

In reality, the interface profile can be different from the curve de-
fined in Equation 8. To represent arbitrary interfaces, we assume w
is not only temporally varying, but also spatially varying. Intuitive-
ly speaking, any complex interface is regarded as a combination of
the simple curves defined in Equation 8. In other words, for any
infinitesimal part of a complex interface, we can always find an e-
quivalent part of a certain curve defined in Equation 8, where the
diffusion constant is computed by inverting Equation 10. So giv-
en wt(x) at x and time t, we first use Equation 10 to estimate the
amount of time the interface has already been diffused:

t̂(x) =

 wt(x)
2
√

2
3 D · erf−1 (0.9)


2

. (11)

We then update w by:

wt+1(x) =
2
√

2
3

D
√

t̂(x) + ∆t · erf−1 (0.9) (12)

When extending this method to 3D cases, we consider the thick-
ness in the normal direction n and update w over time in the same
way. However, it should be pointed out that Equation 12 only holds
for diffusive flows that strictly follow the Fick’s law of diffusion,
in which we also neglects all other factors that can cause sharpen-
ing/widening of the interface, e.g., fluid motion. We will explore
those more complex interface control methods in our future work.

4.2 Implementation

We use method of characteristics to split Equation 5 into three steps:

φ′ = φt − ∆t
(
u · ∇φt) , (13)

φ′′ = φ′ − ∆tα∇ ·
(
φ′ (1 − φ′)

wt+1 n
)
, (14)

φt+1 = φ′′ + α∆t∇2φt+1, (15)

(a) Without interface control (b) With interface control

Figure 6: Smoke with a low diffusion speed. Without interface
control, numerical dissipation causes the simulation result in (a)
more blurred than our result with interface control in (b).

which are corresponding to explicit advection, explicit sharpen-
ing, and implicit diffusion respectively. In our experiment, we
test three advection methods, including semi-Lagrangian advec-
tion [Stam 1999], conservative semi-Lagrangian advection [Lentine
et al. 2011a] and upwind advection [Mullen et al. 2007]. Figure 2
and 6 show their results without and with using our interface control
method. To make the sharpening step mass-preserving, we calcu-

late φ′(1−φ′)
wt+1

∇φ̃

|∇φ̃|+ε
at each grid cell, obtain its value at each face by

taking the average, and then compute its divergence. Here ε is a
small positive number and φ̃ is a slightly blurred version of φ′ by
Laplacian smoothing. They are used to prevent the sharpening step
from failures, when |∇φ′| becomes too close to zero.

To calculate the spatially varying variable wt+1, we first perfor-
m semi-Lagrangian advection to get an intermediate variable w′
at each grid cell. When using semi-Lagrangian, the interpolation
should be weighted by volume fraction as well. After that, we cal-
culate wt+1 from w′ using Equation 12, and we solve the linear sys-
tem in Equation 15 in the end.

Volume fraction correction. Although the advection step can
be mass-preserving as Lentine and collaborators [2011a] showed,
the sharpening step and the diffusion step can still cause φ to go
beyond the range [0, 1]. To solve this issue, we propose a simple
correction step to explicitly project wrong φs back. Our idea is to
propagate the additional volume to neighboring cells, if they can
accept more volume. For simplicity, here we discuss the φ > 1 case
only. The φ < 0 case can be handled in the same fashion.

We first add all of the grid cells satisfying φ > 1 into a heap. In
each iteration, we remove the grid cell c with the largest φ from the
heap, label it as visited, and distribute φc−1 uniformly to its unvisit-
ed neighbors. If φ of any neighbor changes from φ ≤ 1 to φ > 1, we
add it into the heap as well. The whole process ends when the heap
becomes empty. Although it is rare, we may notice an issue when
all of c’s neighbors are visited and φc − 1 cannot be distributed. To
solve this problem, we sum all of these undistributed volume into a
global volume and redistribute it uniformly to every unvisited cell-
s, after the original process ends. We note that this redistribution
may cause more grid cells to be φ > 1, so we mark them as visit-
ed, collect their surplus volumes and distribute them again. Since
the total volume does not change according to the discretization in
Subsection 4.2, this method is guaranteed to converge.
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(a) (c) (b) 

Figure 7: Diffusion Control. Different diffusion effects (bottom)
can be created after using different textures (top) to modify the
sharpening direction. (a) Isotropic diffusion; (b)(c) Anisotropic d-
iffusion.

5 Two-Phase Advective Flow

To make this paper self-contained, we will discuss the advective
flow (i.e., the bulk flow) in this section. Let φ be the volume fraction
of fluid A, and 1 − φ be the volume fraction of fluid B. According
to the convection equation in Equation 1, we have:{ ∂φ

∂t + ∇ · (φu) − ∇ · jA = 0,
∂(1−φ)
∂t + ∇ · ((1 − φ)u) − ∇ · jB = 0.

(16)

in which jA and jB are the diffusive fluxes of the two fluids. Comb-
ing the two formulae in Equation 16 together, we get:

∇ · u = ∇ · (jA + jB) . (17)

Since A and B are the only two fluids within the domain, we must
have jA = −jB everywhere, and we can formulate the governing
equation of the advective flow using the Navier-Stokes equations:

∇ · u = 0,

ρ
du
dt

= −∇p + ∇ · µ
(
∇u + ∇uT

)
+ fs + fb,

(18)

in which p is the pressure, fe is the body force, and fs is the surface
tension force. Since we handle diffuse interfaces rather than sharp
interfaces (such as the level sets), there is no jump condition in our
system. Instead, we define the density and viscosity as a smooth
function: ρ = φρA + (1 − φ)ρB and µ = µAφ + µB(1 − φ). We solve
Equation 18 in a typical way [Stam 1999], by applying velocity
advection, viscosity, external forces, and pressure projection.

One tricky issue here is how to handle the non-uniform viscosi-
ty. Similar to [Rasmussen et al. 2004], we split the asymmetric
system into an asymmetric component and a symmetric compo-
nent. To improve the system performance, we further divide the
symmetric component into a non-uniform component and a unifor-
m component. We then solve the asymmetric component and the
non-uniform component explicitly, and the uniform component im-
plicitly. We note that such an explicit-implicit viscosity scheme can
be unconditionally stable, by choosing a proper magnitude in the
uniform component. More details about this can be found in [Dou-
glas Jr and Dupont 1971].

(a) Before anisotropic diffusion (b) After anisotropic diffusion

Figure 8: Tiger. Anisotropic diffusion in Figure 7(c) is performed
on a tiger’s body to make it look flurry.

6 Results and Discussions
(Please see the supplemental video for more animation examples.)
We implemented our system and tested it on a quad-core Intel Xeon
w3550 3.07GHz workstation with 10GB memory. We use differen-
t time steps for the simulation of the two flows, as long as they
are synchronized within a certain interval. Currently, we set the
time step for the diffusive flow to be ∆t = min(∆t,Ch/max ‖u‖), in
which C = 0.5 is the CFL number and h is the sampling distance.

Diffusivity comparison. Figure 1 demonstrates the ability
of our approach in handling a spectrum of liquid diffusivity, from
immiscible to highly miscible. The liquid diffusivity can be easily
adjusted by changing the diffusion speed D. Thanks to interface
control, our result is free of numerical dissipation artifacts.

Anisotropic Diffusion. Figure 7 demonstrates the ability of
our approach in producing a variety of interesting diffusion effects.
For the anisotropic diffusion, we use a texture to modify the sharp-
ening direction in Equation 4 as

n̂ = γMn. (19)

Here γ is a constant that controls the magnitude of sharpening and
we set it to 1.2 in our experiments. M is a matrix that controls the
sharpening direction, which is constructed from the texture as M =
ttT with t being the normalized gradient of the texture. By using
different textures, we can easily create various diffusion effects. We
also perform the anisotropic diffusion to a tiger’s body to make it
look furry as shown in Figure 8.

Phase change. This example (in Figure 11) shows the phase
change effect simulated by our system. When steam is injected into
air, small water drops gradually form as the temperature decreases.
In this simulation, we use no gravity and we create the condensation
effect by sharpening the interface between stream and air. So we
update the control parameter w in an opposite way as:

wt+1 =
2
√

2
3

D
√

t̂ − ∆t · erf−1 (0.9) . (20)

We clamp w to h/2, if the result from Equation 20 is below that.

Ink. Figure 9 demonstrates the Rayleigh-Taylor instability ef-
fect, when ink is poured into water. In this example, the ink den-
sity is 1050kg/m3, which is slightly higher than the water density
1000kg/m3. The diffusion speed D is set to 0.01. Under the gravity,
ink sinks and blurs gradually, which forms rich details.
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Figure 11: Phase transition. This example simulates phase transition between steam and water.

Figure 9: Ink. Interesting fluid details are formed when heavy ink
is injected into the water container.

Bubbles. This example in Figure 10 shows that our system
can simulate bubbles in water. For rendering, we use the march-
ing cube method to extract water-bubble surfaces for large bubbles.
The system can naturally handle merging or splitting transitions be-
tween large and small bubbles without using particles.

Computational cost. In our current implementation, the most
time-consuming part is solving the fluid incompressibility with a
preconditioned conjugate gradient method. For the interface con-
trol, we find a simple Jacobi iteration method with 20 iterations is
enough to get good results and the total computational cost of the
convection scheme takes approximately 10% of the whole cost.

Limitations. The thickness of the controlled interface needs to
be at least twice the grid cell size to prevent numerical instability,
so it cannot simulate highly immiscible fluids and preserve sharp
surface features during convection. In that case, a sharp interface

Figure 10: Bubbles. This example simulates both large and small
air bubbles, and their transitions in a water container.

model, such as the level set method, should be used instead. S-
ince the whole system is formulated based on volume fraction, it
is not clear how we can handle more than two fluids. Finally, we
derive the parameters and the interface thickness over time based
on theoretical analysis under the Fick’s law of diffusion. In the real
world, however, the mixing process of two fluids can be much more
complicated due to many other factors.

7 Conclusions and Future Work

We present an Eulerian-based approach to simulate mixing and un-
mixing effects of two fluids, by directly controlling their interface.
Since it no longer suffers from numerical dissipation, it can pro-
duce more rich details in animation results. It can also be used as
a convenient tool for users to control specific mixing and unmixing
effects in animation production.

In the future, we plan to study the simulation of more than two fluid-
s. We are also interested in investigating the actual physics causing
phase transitions of two fluids for simulation purposes. Another in-
teresting problem we will study is whether the use of Lagrangian
particles can improve the convection quality for preserving sharp
features, similar to the particle level set method. Finally, we will
explore the use of our approach in real-time simulation by GPU.
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