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Figure 1: Coupling of our surface tracker with a viscosity fluid simulator, 13 phases. The bunnies were assigned with low viscosities while
the balls assigned with high viscosities. Fluid simulation was computed on a 643 grid while the surface tracker computed on a 1283 grid.

Abstract

We introduce a novel framework for tracking multiphase interfaces
with explicit contouring technique. In our framework, an unsigned
distance function and an additional indicator function are used to
represent the multiphase system. Our method maintains the explic-
it polygonal meshes that define the multiphase interfaces. At each
step, distance function and indicator function are updated via semi-
Lagrangian path tracing from the meshes of the last step. Inter-
face surfaces are then reconstructed by polygonization procedures
with precomputed stencils and further smoothed with a feature-
preserving non-manifold smoothing algorithm to stay in good qual-
ity. Our method is easy to be implemented and incorporated in-
to multiphase simulation, such as immiscible fluids, crystal grain
growth and geometric flows. We demonstrate our method with sev-
eral level set tests, including advection, propagation, etc., and cou-
ple it to some existing fluid simulators. The results show that our
approach is stable, flexible, and effective for tracking multiphase
interfaces.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;
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1 Introduction

There are many phenomena in daily life involving the interactions
between multiphase components, such as dry foams, beer bubbles,

∗e-mail:lixs@ios.ac.cn

and oil water mixing. Since the movements of the multiphase inter-
faces are so complicated with lots of degeneracies, such as multiple
junctions, triple lines, capture of these interfaces is highly challeng-
ing.

A variety of methods have been proposed to handle this problem,
including front tracking methods, volume of fluid (VOF) methods,
level set methods, et al. These methods were normally built on the
traditional two-phase methods and extended to handle many-phase
problem with complicated modifications. Although there are both
advantages and disadvantages to each of these methods, it remains
challenging to robustly and accurately handle the complex motions
of the multiphase interfaces.

On the other hand, the multiphase interfaces are essential for visual-
ization, however, the abstraction of interface surfaces is not trivial
accounting for more than two phases. If we apply ordinary poly-
gonization procedures for each phase, we will probably get incon-
sistent surfaces between neighboring phases, which requires some
post-processing techniques to fix.

To address these problems, we present a new framework to track
the multiphase interfaces with explicit contouring technique. In our
framework, an unsigned distance function and an additional indica-
tor function are used to represent the multiphase system on a fixed
Eulerian grid. We maintain explicit polygonal meshes that define
the multiphase interfaces. At each step, distance function and in-
dicator function are updated via semi-Lagrangian path tracing from
the meshes of the last step. Interface surfaces are then reconstructed
and further processed to stay in good quality.

There are several advantages of our method. Firstly, as we update
the distance function by explicitly computing the distance to the
surface meshes we avoid interpolations of distance field across the
interfaces, which are often difficult to accomplish with high accura-
cy in traditional level set methods. Secondly, the reconstruction of
the interface surfaces enables us to automatically handle any topo-
logical changes of the multiphase interfaces. Topological changes
occur naturally and no gaps, overlaps, or ambiguities occur when
multiphase interfaces evolve. The interface surfaces are consisten-
t across the phases and can be used for physical computation and
visualization directly. Finally, our method is mostly very intuitive
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and easy to be implemented and incorporated into multiphase sim-
ulation (Fig. 1).

The combination of explicit contouring with semi-Lagrangian
method has been used by Bargteil et al. [2006] and named as Semi-
Lagrangian Contouring (SLC) method. However, its application to
multiphase surface tracking has not been explored ever and its ex-
tension to multiphase is far from trivial as we need to identify each
phase and a reliable method to reconstruct the multiphase interface
surfaces. We thus augment SLC method with an additional indica-
tor function and a method to reconstruct the multiphase interface
surfaces.

To reconstruct the multiphase interface surfaces accurately and ef-
ficiently, we explore the Voronoi Implicit Interface Method (VIIM)
presented by Saye and Sethian [2011], which points out that the mo-
tions of the interfaces are determined by nearby level sets. We thus
propose constructing the multiphase interfaces utilizing this proper-
ty with custom polygonization and smoothing procedures. Though
our method shares similar benefits of VIIM by employing the idea
of Voronoi interface, our method has a few differences. As we take
an explicit way to compute the distance function, we don’t need to
extrapolate distance function across the interface and we complete-
ly avoid the interpolations near the interface which may require a
high order interpolant. Besides, we reconstruct the multiphase in-
terface surfaces by employing two polygonizations and specially
designed smoothing procedure.

Our contribution is to develop a unified, robust method with ex-
plicit contouring techniques for multiphase surface tracking and
demonstrate its effectiveness. Our approach automatically handles
the complex topological changes of the interfaces (see Fig. 2) and
the interface surfaces is well ready for visualization.

In next section, we briefly discuss some related works. Section 3
provides an overview of our method. Section 4 and Section 5 detail-
s how we update the multiphase system and cast multiphase inter-
face tracking as an interface reconstruction problem, followed by
our feature-preserving non-manifold mesh smoother in Section 6.
Finally we demonstrate the results of our method in Section 7 and
conclude our paper in Section 8.

2 Related Works

2.1 Multiphase Surface Tracking

Level set methods [Osher and Sethian 1988; Osher and Fedkiw
2002] are popularly used for surface tracking. Losasso et al. [2006]
proposed to handle multiphase with a modified level set method.
The method is effective and robust, however this method tends to
use increasing memory when the number of phases getting larger
while our method is capable of handling arbitrary number of phas-
es with only a unified representation for all phases.

Zheng et al. [2006] proposed a regional level set method to track
multi-manifold surface, by defining new operators for level sets.
Though regional level set was used for bubble simulation in [Zheng
et al. 2006; Kim et al. 2007], its application for more-than-two-
phase fluids was not presented. Kim et al. [2010] further improved
regional level set a regional level set graph to track the thin film
between neighboring phases so as to address the problem of many-
phase fluid simulation. The regional level set graph needs to be
carefully updated and maintained, which complicates the method
while our method is simple and is mostly very intuitive.

Recently, Saye and Sethian [2011; 2012] presented VIIM to track
multiphase interfaces built on classical level sets with detailed nu-
merical analysis. Their excellent works greatly inspired our idea of

Figure 2: T1 process: a short edge between vertices on distinc-
t triple-junction curves collapses (top) and T2 process: a region
shrinks to a point and disappears (bottom) under mean curvature
flow. Our method automatically handles the complex topological
changes of the interfaces (1283 grid).

developing our multiphase surface tracker. Our work can be viewed
as an explicit version of VIIM to an extent, but we can avoid the in-
terpolation across the interface so as to eliminate the necessity of a
highly accurate interpolant near the interfaces.

Da et al. [2014] proposed the first triangle mesh-based multimate-
rial front tracking method. Misztal et al. [2012] tracked the multi-
phase interface using the deformable simplicial complex. Explicit
surface tracking normally requires complicated mesh operations.
As our method reconstructs the surface every step, our method can
avoid such complicated explicit operations.

2.2 Interface Reconstruction

There has been a great deal of excellent works in the context of
interface reconstruction. We will mainly focus on interface recon-
struction related to multiphase.

Bloomenthal and Ferguson [1995] presented one of the first ap-
proaches for generating non-manifold surfaces defined by multiple
regions of space. Ronald and Kevin [2005] proposed an adaptive
polygonization of non-manifold implicit surfaces with octree sub-
division. Hege et al. [1997] extended the basic marching cubes
algorithm by allowing multiple vertex classes with an automatic
method for generating topologically correct triangulations. Bertram
et al. [2005] generated a quadrilateral for every edge connecting
voxels with two different materials on a dual grid composed of vox-
els. Bernhard et al. [2005] made use of domain subdivision to con-
struct non-manifold meshes from multi-labeled volumetric dataset-
s. Wu and Sullivan [2003] proposed the multi-material march-
ing cubes (M3C) algorithm, which extracted boundary surfaces be-
tween different materials. Most of these works deal with multi-label
data without distance value and generate surfaces that are suffered
from stair-stepped characteristics. Our polygonization procedure
takes the information of level set into consideration and approxi-
mates the normal direction in cell corners to improve the accuracy
of intersection computation. We also design a new set of stencil-
s which is suitable for the polygonization of arbitrary number of
phases.

Dey et al. [2012] applied a recent Delaunay refinement algorith-
m to generate high quality triangular interface surfaces. Bronson
et al. [2013] introduced a new algorithm for generating tetrahedral
meshes that conform to volumetric domains of multiple materials.
Saye and Sethian [2012] extracted the multiphase interfaces with
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piecewise linear interpolation and further quality-improved [Saye
2013] under the framework of VIIM, which requires the contin-
uous piecewise interpolation of every distance function and mesh
abstraction and chopping. Anderson et al. [2008; 2010] addressed
the Material Interface Reconstruction problem in standard VOF
method.

2.3 Surface Smoothing

One prevalent approach to surface smoothing is Laplacian smooth-
ing, which moves every vertex towards a weighted average of
its neighboring vertices. Original Laplacian smoothing severe-
ly shrinks the volume or smears the sharp features. Vollmer et
al. [1999] proposed an HC-algorithm to prevent the effect of shrink-
ing. Taubin [1995] introduced two-pass non-shrinking filter under
a signal processing framework. Desbrun et al. [1999] introduced an
implicit integration of the diffusion equation for the smoothing of
meshes. Recent work of Jiao [2007] and Brochu [2009] suggested
using null-space smoothing for features preserving.

Hubeli and Gross [2000] designed a multilevel fairing algorithm
to remove noise for non-manifold meshes based on existing fairing
operators along with an exact local volume preservation strategy
and a method for feature preservation. We take the similar idea
for non-manifold feature preservation, but we use different feature
abstraction strategy and smoothing algorithm.

3 Method Overview

At each point x in the domain, let φ(x) be the positive distance
from x to the nearest point on the interface, χ(x) be the indicator
function, which indicates the fluid phases. Multiphase interfaces
are now lying on where φ(x) = 0.

We formulate the tracking of multiphase interfaces as a surface
contouring problem. At each time step. φ(x) is traced backward
along the streamline and its value is recomputed with the semi-
Lagrangian contouring method [Bargteil et al. 2006]. χ(x) is is
traced back similarly, but is only assigned with the nearest phase id
without interpolation.

Figure 3: Voronoi interface
(solid line) is defined as the
Voronoi diagram of nearby
ε-surfaces (dashed lines).

To reconstruct the interface sur-
faces, we employ two pass-
es of explicit polygonization-
s. In the first pass, we recon-
struct the ε-surfaces from the
unsigned distance field φ(x),
i.e. φ = ε, ε > 0, via
Marching Cubes (MC) algorith-
m [Lorensen and Cline 1987],
which remain hypersurfaces in
a single phase during the inter-
face evolution [Saye and Sethi-
an 2011]. Then, we are able to
reconstruct the multiphase inter-
faces as the Voronoi interface of
the ε-surfaces (Fig. 3). During

the reconstruction, rather than directly computing the Voronoi in-
terface of ε-surfaces, we propose a new polygonization algorith-
m based on Marching Tetrahedra (MT) algorithm [Gueziec and
Hummel 1995] to approximate the interfaces efficiently. Interface
surfaces are subsequently smoothed and quality-improved with a
feature-preserving non-manifold mesh smoother.

Here we outline our method formally. Given an N -phase problem
marked with an unsigned distance function φ(x) as well as an in-
dicator function χ(x) defined on an Eulerian grid, our multiphase

Figure 4: Update of the distance and indicator functions: For a
point (green circle) in space, we trace back a step to find its position
(blue circle) in last step (middle); distance function are then updat-
ed by computing the distance to interface surfaces in last position,
indicator function are also updated with the nearest indicator (left);
once the distance and indicator function are updated, we process to
construct the new interface surfaces (right).

surface tracking consists of the following steps:

1. Update φ and χ.

2. Reconstruct nearby ε-surfaces.

3. Reconstruct multiphase interfaces as the Voronoi interface of
ε-surfaces, referred to as interface surfaces hereinafter.

4. Smooth interface surfaces to improve the mesh quality.

Step 1 is performed just the same as the ordinary semi-Lagrangian
method except that we update φ by directly computing the nearest
distance to the interfaces as [Bargteil et al. 2006]. χ is is simply
assigned to the nearest id since it makes no sense to interpolate
with different phase ids (Sec. 4).

Step 2 is to triangulate surfaces lying on where φ = ε. The algo-
rithm is basically the same as the standard MC algorithm, except
we record the phase ids during our reconstruction for later use.

The key to step 3 is an accurate and fast way to compute the Voronoi
interfaces of ε-surfaces. Since it’s difficult to compute Voronoi Di-
agram of triangles directly, we propose to use an approximate but
very efficient method to extract Voronoi interfaces of the ε-surfaces
for computer graphics (Sec. 5).

For step 4, we provide a feature-preserving non-manifold mesh s-
moother to get high quality surface meshes (Sec. 6).

Fig. 4 shows the update process of step 1 and Fig. 5 gives an
overview of the multiphase interface reconstruction in later steps.

4 Multiphase Semi-Lagrangian Contouring

To track multiphase surfaces, traditional level set methods meet
some difficulties in handling the multiphase interfaces. If we on-
ly use one level set for all phases, the interpolation near the inter-
face can be very inaccurate. Otherwise, if we use level set for each
phase, the memory usage will increase quickly as the number of
phase increases. Besides, it is difficult to deal with the inconsis-
tency between neighboring phases. The abstraction of consistent
interface meshes is also difficult in such case.

To solve these problems, we apply the semi-Lagrangian contour-
ing to compute the distance to interface directly from the surface
meshes and formulate the multiphase surface tracking as an explic-
it surface contouring problem. There are several benefits with this
treatment. First, we do not need to worry about the interpolation er-
rors across the interfaces, especially in the junctions of multiphase
interfaces. Besides, we are not required to solve the level set equa-
tion explicitly but can still benefit from the nice features of level
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Figure 5: Overview of our multiphase interface reconstruction : 1. Given φ and χ; 2. ε-level sets is triangulated; 3. Narrow band cells are
labeled; 4. Interfaces are reconstructed and smoothed; 5. Final interface surfaces.

set methods, which handles the topological changes automatical-
ly. Finally, by this formulation, there is no inconsistency between
neighboring phases and the interface surfaces are well defined, i.e.
no gaps, overlaps or ambiguities between neighboring phases.

However, there still remains a problem: The update of indicator
function is not accurate enough as desired since we update it simply
with the nearest indicator. This treatment may result in low accu-
racy near the multiphase interfaces. As demonstrated in the work
of Saye and Sethian [2011; 2012], the indicator function is accurate
inside the ε-surfaces (where φ > ε), thus we can reconstruct the
interface surfaces as the Voronoi interface of ε-surfaces (Fig. 3). In
this way, we do not have to use the information of indicator func-
tion near the interfaces and we do not have to explicitly deal with
the topological changes of the interface surfaces, which is handled
by the level set method implicitly. The only thing left is how to con-
struct the interface surface meshes, which will be detailed in later
sections.

Be noted that, though it does not affect the reconstruction of the
interface surfaces, we may have to reinitialize χ when there are
numerous phase merging or separations. We can reinitialize χ by
checking relative orientations with respect to the triangulated inter-
face surfaces.

5 Polygonization of Multiphase Level Set

Once we have triangulated the ε-surfaces, we can reconstruct mul-
tiphase interfaces as the Voronoi interface of ε-surfaces. By defini-
tion, points on the multiphase interfaces are those have equal dis-
tances to at least two different ε-surfaces. Based on this property,
we first compute the nearest point on ε-surfaces for each cell corner
and label them with phase id of that nearest point. Then we identi-
fy the cells that have different ids in the corners as boundary cells,
from which the surfaces are reconstructed.

As interfaces can only lie between ε-surfaces of different phases, we
can restrict our computation to a small narrow band where φ <= ε.
In our implementation, we record the nearest point on ε-surfaces,
the nearest distance, and the phase id for each cell corner in the
narrow band. To compute the nearest point, we build a kd-tree of the
surface meshes for fast retrieval of nearest triangles. This procedure
thus is greatly accelerated by excluding unnecessary cells and space
subdivision technique.

To remove ambiguities, we assume that there are no multiple inter-
sections between two neighboring cell corners. This assumption is
taken by most of polygonization methods and works well in prac-
tice.

Figure 6: Intersection computation between A and B: da + ~NA ·
~AO = db + ~NB · ~BO.

5.1 Intersection Computation

Intersection between two neighboring corners with different ids is
computed as follows (see Fig. 6): Suppose we want to compute the
intersection between corner A and B, denoted as O and

−−→
BO =

α
−→
BA. The nearest points on ε-surfaces are pa and pb, with their

distances da and db, respectively. By definition, O is equidistant to
the ε-surfaces on both sides, we can get:

da +
−−→
NA · [(1− α)

−→
AB] = db −

−−→
NB · (α

−→
AB) (1)

where
−−→
NA and

−−→
NB are the normals at point pa and pb, respectively,

we approximately assume point A and B have the same normals as
their nearest points on ε-surfaces.

Equ. 1 estimates the distances from ε-surfaces to the intersection
point on both sides along the normal directions. As it’s only lin-
ear interpolation, the surfaces might be quite rough especially for
multiphase interfaces. In our implementation, we improve this by
estimating the normals in the corners and the results are improved
to be quite smooth.

5.2 Precomputed Stencils

To get high quality surface meshes, we divide the cubes into tetra-
hedrons which can be polygonized with stencils depicted in Fig. 7.
Our treatment makes it possible to precompute stencils and we can
locate the junctions within a tetrahedron accurately. Besides, since
there are no ambiguities in MT algorithm [Gueziec and Hummel
1995], the reconstructed surface meshes are guaranteed to be topo-
logically consistent.

We briefly discuss the stencils here. For simplicity, we use a triple
(id0, id1, id2) or a tetrad (id0, id1, id2, id3) to represent the con-
figuration of a triangle or a tetrahedron,respectively. Each compo-
nent represent an id.
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Figure 7: Stencils for our multiphase polygonization. Note that in
(0, 1, 2, 3) we only show interface surfaces connected to one face
of the tetrahedron for better illustration.

We subdivide the triangle or the tetrahedron by taking advantage
of the properties of the incenter of a triangle and tetrahedron (see
lower right corner of Fig. 7). Take (0, 1, 2, 3) as an example, as the
incenter has equidistance to the edges or faces, we can construc-
t four temporary triangles on faces of tetrahedron after getting the
intersection points on all edges. Then, we connect their incenters
together to form a temporary tetrahedron. For each temporary tri-
angle, we connect the incenter of the temporary tetraheron and its
incenter with its three intersection points to form three triangles. In
this case, 12 triangles will be generated in all (Fig. 7).

Though our set of stencils is quite small, our polygonizer can deal
with arbitrary number of phases without extra efforts.

6 Mesh Smoothing

Though we have carefully designed the stencils, it’s still necessary
to smooth the interface surfaces to mitigate the visible stair-stepped
artifacts, which are caused by some inaccurate interpolations near
the multiphase interfaces in intersection computation. Notice that
most bumps appear in the non-manifold curves. Based on this ob-
servation, we present a feature-preserving non-manifold smoothing
algorithm to remove the stair-step artifacts.

6.1 Feature Abstraction

For multiphase surface tracking, it’s most important to track the
multiple junctions, triple points, triple lines, etc., thus we design
our feature abstraction especially for these features.

We will describe our framework with the following structures:

• Vertices V : Vertices in interface surfaces.

• Edges E: Edges in interface surfaces.

• Feature vertices VF : Vertices on boundary, curve corners or
non-manifold edges.

• Anchor feature vertices VA: Vertices connected to only one or
more than two feature edges.

• Feature edges EF : Boundary edges or non-manifold edges.

Figure 8: A rough multiphase interface surfaces smoothed by our
algorithm with 5 iterations. Anchor feature vertices (red spheres)
and curves (different colors) are shown in the bottom row.

• Feature curves CF : Curves formed by feature edges.

• Manifold planes PM : Near-planar planes formed by planes
incident on non-manifold curves.

Algorithm 1 lays out our feature abstraction algorithm and relies on
the data structures described above.

Algorithm 1 Feature abstraction
1: Locate EF in E
2: Locate VF , VA in EF

3: Construct CF from VA and EF

4: Construct PM from CF

5: Compute supplement of VF from CF

It’s straightforward to locate feature edges and feature vertices by
definitions. Anchor feature vertices are then computed by checking
the number of feature edges incident on. As its name indicated,
they are anchored in the whole process. [Line 1, 2 of Algorithm 1]

To compute the feature curves, we have to group feature edges into
different connected components. Since anchor feature vertices, cor-
responding to junction points, are important in multiphase surface
tracking, we use them as separations of different feature curves.

Our feature curve construction algorithm works by traversing from
one anchor vertex to another or an endpoint along feature edges.
This is efficiently done with depth first searching on interface sur-
faces. Some feature edges cannot be connected to any anchor fea-
ture vertex, e.g. boundary edges. For these feature edges, we ran-
domly pick one and traverse to construct feature curve until all fea-
ture edges are attached to a curve. By construction, all feature edges
appear in one and only one feature curve. [Line 3]

After constructing the feature curves, we perform additional corner
feature vertex abstraction for feature curves by checking the angle
formed by two edges incident on a vertex. We take it as a feature
vertex if the angle exceeds a maximum value (like π/3). Curves are
temporarily smoothed to remove noise for more accurate extraction.
See Fig. 8 for an example of feature vertices and curves. [Line 5]

A feature curve can be embedded into a two-manifold plane if t-
wo planes incident on this curve form a very large dihedral angle
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Figure 9: Evolution of a T-junction to Y-junction subject to curva-
ture flow. Note that the Y-junction will converge to triple lines and
points with 120◦ angles according to Young’s law.

(near π). Thus we compute a near-planar manifold plane for each
non-manifold curve. We check the planes incident on each non-
manifold curve, and construct a near-planar plane by combining
the two planes, which form the maximum dihedral angles and also
exceed a certain value (like 0.9π). We accomplish this by travers-
ing triangles incident on feature curves to construct incident planes
and then check the angles they form. This plane would enable us to
smooth across the feature curves. [Line 4]

6.2 Smoothing Algorithm

With mesh feature abstracted, we are now ready to smooth the in-
terface surfaces while preserving the features. The smoothing algo-
rithm could be detailed in Algorithm 2 below.

Algorithm 2 Smoothing algorithm
M = interface surfaces, n = iteration
for i = 0; i < n; i+ + do

Fix VF , perform 2D-Laplacian smoothing for M
Fix VA, perform 2D-Laplacian smoothing for PM

Fix VA, perform 1D-Laplacian smoothing for CF

end for

For Laplacian smoothing, the original version shrinks the volume
severely. We have tried HC-algorithm [Vollmer et al. 1999] and
non-shrinking filter in [Taubin 1995] for volume preservation. We
found that HC-algorithm outperformed the latter one in our applica-
tion, thus we adopt HC-algorithm for our algorithm. Note that HC-
algorithm is not completely free from shrinkage, but yields quite
satisfactory results. If exact volume preservation is required, more
complicated local volume preserving technique from [Hubeli and
Gross 2000] might be used.

7 Results

We have performed several tests to demonstrate the capabilities of
our method. For all our experiments, we set ε = 2h (h is the grid
cell size) and use 5 iterations smoothing for a tradeoff between ac-
curacy and computation cost. All computations were computed on a
PC with 2.7GHz CPU and 12 GB memories in single thread. Reso-
lution in all examples ranged from 643 to 2563. Computation times
for distance computation and smoothing ranged from less than a
second to a few minutes depending on the resolution and also size

Figure 10: Advection of Voronoi cells with agitator velocity (from
top to bottom): 2D motion of 50 random phases with/without d-
iffusion (interface shown in blue line), 3D motion of 50 random
with diffusion (interface surfaces shown), 3D motion of 200 ran-
dom phases with diffusion (subset of phases shown). 1283 grid.

of the narrow band (related to the multiphase interfaces). Polygo-
nizations normally took a few seconds. Some detailed timings are
summarized in Table 1 and some analysis in Sec. 7.4.

Here we first specify how to choose the value of ε. We couple ε and
h (ε = βh) and choose ε ≥ 2h so that any finite difference stencils
used to evolve the unsigned distance functions stay completely in
one phase and do not across the interface and the indicator function
is accurate away from the interface. In addition, the size of nar-
row does not need to increase as h decrease and this choice also fits
naturally into simulations with CFL-type (i.e. fixed λ) requirement
relating time step ∆t to h. We suggest to use β ≥ λ in these simu-
lations to ensure accuracy. However, larger ε gives larger numerical
errors generally. We use λ = 1 for our simulations, thus we choose
ε = 2h. For more numerical experiments on the choice of ε, please
refer to the original VIIM[Saye and Sethian 2012].

7.1 Convergence Test

As in multiphase, exact solutions are less well-known, we test our
method with the motion of a single T-junction evolving into a Y-
junction under curvature flow. It’s well known that the motion will
result in 120◦ angles, as indicated by the Young’s law. We consider
Neumann boundary conditions in both 2D and 3D. Fig. 9 shows
the snapshot of the evolution, which ultimately converged to triple
points and lines. Thus convergence can be achieved by our method.
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Figure 11: Normal flows: Two
spheres underwent outward/inward
normal flow(top, 1283 grid); T-
wo overlapping spheres underwent
normal flow with a cyclical order-
ing (bottom, 2563 grid). The inter-
face surfaces are cut away for visu-
alization.

Interface reconstruction Interface smoothing
Example Resolution Advection Labeling Polygonization Feature abstraction Smoothing Total

1 1283 9.22 3.47 0.34 2.85 0.42 16.3
2 2563 10.19 2.35 0.23 1.52 0.11 14.4
3 1283 - 5.48 0.64 5.23 0.78 12.13

Table 1: Average computation time (sec/step) of our algorithm in selected examples: 1. Advection of 50 random Voronoi phases in Fig. 10;
2. Cyclical normal flow in Fig. 11; 3. Propagation of 200 random Voronoi phases in Fig. 12.

Figure 12: 200 random Voronoi cells evolved under mean curva-
ture flow, leading to large number of complex topology changes.
1283 grid.

7.2 Advection

Several advection tests were performed for our surface tracker. In-
stead of using a distance tree, we only maintain a kd-tree for fast
distance computation both in advection and polygonization proce-
dure to simplify our implementation. We use governing equation:

φt + u · ∇φ = Mσκ|∇φ| (2)

for advection test, where u is the external driving velocity, κ is
the mean curvature of the interface and σ is the surface tension
coefficient. M denotes the amount of permeability. M = 0 means
no permeability and the equation describe pure advection of φ along
u while M > 0 adding some diffusions of φ.

We first considered advecting random Voronoi cells defined on do-
main [0, 1] with an prescribed external velocity:

u(x, y, z) = (−sin2(πx)sin(2πy), sin2(πy)sin(2πx), 0) (3)

with/without diffusions (M = 1/M = 0) using zero Neuman-
n boundary conditions, as showed in Fig. 10. External velocity
caused significant shearing, phase rearrangement and topological
changes, which were all automatically handled by our method. In
the case of diffusions, some phases were collapsed while others
grew larger.

We also conducted a series test of normal flows. We first compute
velocity as u = kN, where k is an adjustable parameter and N
the normal of the interface and apply the advection equation with-
out diffusion to simulate normal flow. Top row of Fig. 11 shows

Figure 13: Random Voronoi cells motions under mean curvature
flows: 2D motion of 50 random phases with area conservation
(top), 3D motion of 200 random phases with volume conservation
(bottom). 1283 grid.

the results of two spheres driven by outward/inward normal flow.
Bottom row of Fig. 11 shows a difficult case in level set methods.
Three phases were restricted to flow in a cyclical order to form a s-
tationary triple line. Our method is capable of handling the complex
motions of this case.

It should be noted that in the case of multiphase simulation, the
normal should be carefully defined. We use a simple but consistent
way to define it. We flip the unsigned level set of neighboring cell
to negative if it has a different id comparing to the center cell when
computing the normal. In this way, we do not have to construct a
signed level set for each phase and the normals between different
phases can be naturally interpolated across the interfaces without
extra special treatment. The surface tension is defined in the same
manner.

7.3 Propagation

In level set propagation tests, our tracker was used to construct in-
terface surfaces and frequently reinitialize φ and χ. The governing
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Figure 14: Bubble formulation: a cluster of bubbles randomly
merged together and driven by volume conservation mean curva-
ture flow (643 grid).

equation for propagation is φt = σκ|∇φ|, which is integrated with
forward Euler stepping. This is actually the mean curvature flow.

Fig. 2 demonstrates two basic configurations to test the accuracy
of our method under mean curvature flow, T1 and T2 process were
reproduced correctly without any extra efforts. Fig. 12 and Fig. 13
show the results of Voronoi cells driven by mean curvature flow,
leading to a large number of complex topological changes. Vol-
ume conservation technique in [Saye and Sethian 2011] was used
in example of Fig. 13. Areas and volumes can be easily computed
in polygonization procedure with a few lines of code. Neumann
boundary conditions were used for all examples above.

We also performed a test to predict the bubble formulation with
volume conservation mean curvature flow. Bubbles were random-
ly merged during the formulation. Mean curvature flow minimizes
the total surface area of all interfaces subject to volume conserva-
tion constraints for each phase. Our method correctly predicted the
shapes of the bubbles, as showed in Fig. 14. The bubbles tend to
minimal their surface areas and makes about 120◦ at triple lines
(Plateau’s laws).

7.4 Coupling with Fluid Simulator

We coupled our surface tracker with several fluid simulators loose-
ly. Fluids were modeled as immiscible. The fluid simulator provid-
ed the surface tracker with a velocity field while the surface track-
er provided the simulator with the unsigned distance and indicator
function in turn. In this way, the fluid simulator and surface tracker
can run with independent resolution.

Fig. 1, Fig. 15 and Fig. 16 showed the results of coupling our sur-
face tracker to a viscosity fluid simulator [Batty and Bridson 2008].
Different viscosities were assigned to bunnies and spheres in Fig. 1
while same high viscosities were used for all phases in Fig. 15 and
Fig. 16. Fig. 15 demonstrated eleven bunnies dropped into a pile
while Fig. 16 demonstrated a more complicated scene with sixty
spheres dropped together to create complex interfaces.

Fig. 17 depicted five viscoelastic balls fell on a pool by coupling

Figure 15: 11 viscous bunnies dropped together into a pile under
gravity (1283 grid).

our method with the viscoelastic fluid simulator in [Goktekin et al.
2004]. The balls jumped on the surface of the pool, leading to fast
changing interfaces.

Fig. 18 showed two layers of fluid where the bottom layer fluid is
lighter than the top layer fluid, which causes Rayleigh-Taylor insta-
bility when two layers of fluid switch places. This is an extremely
challenging case to test our surface tracker. Our tracker is able to
track the interface but still suffers from some detail losses.

Fig. 19 depicted dropped five balls into a pool separated by differ-
ent phases. The simulation is driven by an ordinary inviscid fluid
simulator and the mean curvature flow. The multiphase interfaces
finally converged to an equilibrium with various topological change
occurred.

Finally, we simulated two liquid droplets colliding in zero gravity
in Fig. 20. The two liquid droplets are separated in the beginning
and driven by surface tension. In the process of evolution, they
touched each other and merged together under the surface tension
force. After that, external forces were applied to tear them apart.

To get an intuitive impression of the computational efficiency of our
method, we compare the timing of fluid simulator to that of the sur-
face tracker. In the viscosity fluids simulation of Fig. 16, the sim-
ulation took average 2 minutes each step while the surface tracker
took about 43 seconds (28s for advect, 6s for labeling, 7s for s-
moothing and rest for others) for 60 phases (right lower of Fig. 16).
The surface tracker thus took less than 26.38% of the total com-
putational time. In fact, timing for surface tracker would be much
smaller when there are fewer phases. For the Rayleigh-Taylor insta-
bility example, the fluid simulator took average 185 seconds each
step while the surface tracker took average 32 seconds, 14.75% of
the computational cost. In examples with a small number of phases
or less complicated interfaces, the surface tracker only took a small
fraction of the total computational time.

The interfaces between different fluids with various merging and
separations were clearly captured by our method as expected. Topo-
logical changes were handled automatically. The interface surfaces
were used to render the final images directly.
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Figure 16: 60 viscous spheres dropped together to form complex
interfaces (1283 grid).

Figure 17: Coupling of our multiphase surface tracker with a vis-
coelastic fluid simulator: five balls fell on a quiet pool (1283 grid).

8 Discussion and Conclusions

We provide an elegant and effective tool for multiphase surface
tracking, which is capable of handling topological changes auto-
matically. It’s robust, flexible and easy to implement.

Though we have shown its properties, there are still some limita-
tions. We use a fixed Eulerian grid for computation, which occu-
pies large memories. One promising direction is to use memory-
efficient data structure or adaptive grid. Since we rely on ε-surfaces
to reconstruct the interface surfaces, thin features that can be cap-
tured are limited by the choice of ε. Interface surfaces involving
regions, whose interior level set values are smaller than ε, will be
totally missed. ε also affects the largest time step we can use. Vi-
sual flickers can occur since we reconstruct the interface surfaces
every time step. This may be mitigated by exploring the temporary
coherence of the evolving interfaces. Finally, our method still in-
herits the limitation of the original level set method with regards to
volume loss. This can be addressed by increasing the resolution or
employing other methods like particle level set to improve it.

Figure 18: Rayleigh-Taylor instability: Our surface tracker was
able to capture the complex interfaces caused by the turbulent fluid
(1283 grid).

Figure 19: Five balls dropped into a pool separated by several dif-
ferent fluids. The simulation is driven by an ordinary inviscid fluid
simulator and the mean curvature flow. The multiphase interfaces
finally converged to an equilibrium (643 grid).
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