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Smoothed particle hydrodynamics (SPH) is efficient, mass preserving, and
flexible in handling topological changes. However, sparsely sampled thin
features are difficult to simulate in SPH-based free surface flows, due to a
number of robustness and stability issues. In this article, we address this
problem from two perspectives: the robustness of surface forces and the
numerical instability of thin features. We present a new surface tension
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force scheme based on a free surface energy functional, under the diffuse
interface model. We develop an efficient way to calculate the air pressure
force for free surface flows, without using air particles. Compared with
previous surface force formulae, our formulae are more robust against par-
ticle sparsity in thin feature cases. To avoid numerical instability on thin
features, we propose to adjust the internal pressure force by estimating the
internal pressure at two scales and filtering the force using a geometry-
aware anisotropic kernel. Our result demonstrates the effectiveness of our
algorithms in handling a variety of sparsely sampled thin liquid features,
including thin sheets, thin jets, and water splashes.
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1. INTRODUCTION AND BACKGROUND

Small-scale thin features, such as water streamlets and sheets, pro-
vide interesting details in physically based liquid animation. But
how to prevent them from being destroyed by the resolution limit
and numerical instability is challenging in computer graphics. While
most research efforts have been spent on solving this problem for
grid-based Eulerian simulators [Losasso et al. 2004; Irving et al.
2006; Kim et al. 2007; Sussman and Ohta 2009] and mesh-based
Lagrangian simulators [Thürey et al. 2010; Wojtan et al. 2010;
Brochu et al. 2010; Zhang et al. 2011; Clausen et al. 2013], little
has been done to smoothed particle hydrodynamics (SPH) and its
simulators. In fact, SPH is highly sensitive to the lack of particles
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around liquid surfaces in free surface flows, which makes sparsely
sampled thin features even harder to simulate. Since SPH simula-
tors are welcomed in many applications for their efficiency, mass
preservation, and flexibility in handling topological changes, we
think it is necessary to robustly simulate thin features in SPH-based
free surface flows as well.

Different from the recent work on the resolution limit of particle-
based simulation [Adams et al. 2007; Solenthaler and Gross 2011,
Ando et al. 2012, 2013], our work is focused on the numerical aspect
of sparsely sampled thin features. Specifically, we are interested in
knowing how to improve their robustness, even when there are not
sufficient particles. From our experience, we found two main factors
related to this problem.

The first factor is comprised of the surface forces, especially sur-
face tension. Surface tension plays an important role in both main-
taining and destroying small-scale thin features in the real world.
There are two typical ways to calculate surface tension under the
SPH framework: the continuum surface force (CSF) method [Mor-
ris 2000; Müller et al. 2003; Hu and Adams 2006] and the inter-
particle interaction force (IIF) method [Nugent and Posch 2000;
Tartakovsky and Meakin 2005; Becker and Teschner 2007]. By
defining surface tension as a mean curvature flow at the macro-
scopic level, the CSF method calculates the surface normal at each
particle and then uses a smoothing kernel to estimate the divergence
of the surface normal. Alternatively, the IIF method calculates sur-
face tension at the microscopic level as an inter-molecular force
between two particles. While both methods are adequate for large
water bodies, they become less accurate and robust with fewer par-
ticles, making thin features difficult to survive over time, regardless
of surface tension coefficients.

The second factor is the numerical instability inherent in both
attraction forces and repulsion forces. Unlike linear spring forces,
SPH-based attraction forces, including the surface tension force
and the air pressure force, are stronger when particles move closer
and weaker when particles are more separated. If they are the only
forces, they will separate particles into a number of clusters. This
problem is commonly known as tensile instability. Previous re-
search on tensile instability was mainly focused on large deforma-
tion in elastic solids [Chen et al. 1999; Gray et al. 2001], and the
proposed techniques are not directly applicable to liquid simulation.
Meanwhile, SPH-based repulsion forces, such as the internal pres-
sure force, tend to push particles out when they are located slightly
off the same line or plane due to numerical errors. Both attraction
forces and repulsion forces can cause thin liquid features to rupture,
such as the thin sheet example shown in Figure 6. We note that
numerical instability is different from real-world surface tension
instability. Its existence in free surface flows is largely due to the
fact that particles are defined on the liquid side of free surfaces only.
So adding ghost particles on the air side can help reduce numeri-
cal instability as Schechter and Bridson [2012] suggested, but this
requires more implementation effort and computational cost.

Based on these two observations, we make the following contri-
butions to robustly simulate sparsely sampled thin features.

—We give a surface tension scheme derived from the surface energy
functional under the diffuse interface model. This scheme can
robustly reflect the local geometry of liquid surfaces, even in
sparse samplings.

—We provide an air pressure formula solely based on liquid parti-
cles in the liquid phase. It can produce a variety of air pressure
effects with little computational overhead.

—We present an internal pressure force algorithm based on
two-scale pressure estimation and geometry-aware anisotropic

filtering. It effectively reduces numerical instability, without af-
fecting the incompressibility of water bodies.

We implemented our new methods and integrated them into a local
Poisson SPH solver (LPSPH) [He et al. 2012a]. The whole system is
efficient and compatible with graphics hardware acceleration. Our
experiment shows that it can realistically and robustly simulate a
variety of sparsely sampled thin features, such as thin jets (Figure 7),
thin films (Figure 10), and water splashes (Figure 9).

2. PREVIOUS WORK

Smoothed particle hydrodynamics (SPH) has been widely used
in computational physics and computer graphics to simu-
late dynamic liquid behaviors. Previous research has been fo-
cused on a number of problems, including artificial viscosity
[Monaghan 1989, 1994], incompressibility [Becker and Teschner
2007; Solenthaler and Pajarola 2009], boundary conditions [Müller
et al. 2003; Schechter and Bridson 2012], coupling with other fluids
and solids [Monaghan 1994; Müller et al. 2005; Solenthaler and
Pajarola 2008; Ihmsen et al. 2010; Akinci et al. 2012b], and parti-
cles with variable sizes [Adams et al. 2007; Solenthaler and Gross
2011; Ando et al. 2012, 2013].

Among these problems, surface tension and its influence on
sparsely sampled thin features is less studied in computer graphics.
Initially developed for multiphase flows [Morris 2000], the con-
tinuum surface force (CSF) method was extended by Müller and
colleagues [2003] to handle free surface cases as well. Hu and
Adams [2006] improved the robustness of the CSF method by for-
mulating surface tension as the divergence of a stress tensor, rather
than the surface normal. Sirotkin and Yoh [2011] presented a new
smoothing kernel and gradient correction terms to avoid compres-
sional instability in the CSF method. The particle-based surface
tension flow can also be calculated by the inter-particle interaction
force (IIF) method, as Nugent and Posch [2000] showed. Using
a combination of repulsion and attraction forces, Tartakovsky and
Meakin [2005] used the IIF method to simulate both surface ten-
sion and fluid-solid coupling effects. Becker and Teschner [2007]
applied the IIF method to calculate surface tension in free surface
flows. More recently, Akinci and colleages [2013] proposed to use
a combination of CSF and IIF by integrating the molecular cohe-
sion into the CSF method, where large surface tension effects were
obtained.

Unfortunately, the accuracy of CSF and IIF depends on a suffi-
cient number of particles, their results become less reliable and more
noisy for thin features represented by few particles. Alternatively,
Zhang [2010] and Andersson and collaborators [2010] proposed to
reconstruct liquid surfaces for surface tension calculation. Yu and
colleagues [2012] maintained liquid surfaces over time explicitly as
triangle meshes. Both methods are more robust than particle-based
surface tension methods, but require additional computational cost.
Since many issues in free surface flows do not occur in multiphase
flows, a straightforward idea is to create ghost particles on the air
side of free surfaces, as Schechter and Bridson [2012] showed. The
computational overhead of processing these new particles can be
large, especially if a scene contains many thin features increasing
the surface area.

The existence of thin features in liquid animation also relies on the
liquid surface reconstruction process. The blobby sphere approach
proposed by Blinn [1982] extracts an isosurface from a scalar field
using a sum of radial basis functions. Zhu and Bridson [2005] later
improved this method to reduce artificial bumps and indentations, by
adding compensations for local particle density variations. Adams
and collaborators [2007] proposed to track particle surface distances
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over time, so that liquid surfaces can be smoothly reconstructed
for nonuniform particles. Instead of using an isotropic smoothing
kernel, Yu and Turk [2010] used an anisotropic smoothing kernel
based on local particle distributions, in order to reduce surface
bumps without destroying thin features. Bhatacharya and colleagues
[2011] formulated liquid surface reconstruction as a constrained
optimization problem and used the level-set approach to minimize
the thin plate energy of liquid surfaces. Akinci and collaborators
[2012a] apply mesh operations to reduce bumps and improve the
reconstruction quality efficiently. While our work is focused on
numerical simulation, our system can benefit from the use of these
liquid surface reconstruction techniques for more robust thin feature
effects as well.

3. SURFACE FORCES

In this section, we propose new techniques to handle surface tension
and air pressure for SPH-based free surface flows. Both techniques
are based on the diffuse interface model whose history can be traced
back to van der Waals’ early work [1893]. The basic assumption is
that a liquid surface has a small but finite thickness, across which
physical quantities can change rapidly but smoothly from one phase
to another. The surface energy in a diffuse interface can be defined
as a Helmholtz free energy functional [Cahn and Hilliard 1958]

E =
∫

V

[
f (c) + κ

2
|∇c|2

]
dV, (1)

in which V is the liquid volume, κ is a squared gradient energy
coefficient, f (c) is the bulk free energy density, and c is the con-
densation field. Typically, the condensation value c is 1 if a point
is within the volume, or 0 if a point is outside of the volume; and
changes smoothly from 1 to 0 when a point moves across the inter-
face. Intuitively, |∇c| indicates where the interface is and how fast c
changes. The squared gradient energy term in Eq. (1) is the surface
tension energy

E s =
∫

V

κ

2
|∇c|2dV, (2)

which is proportional to the surface area. The gradient of this energy
can then be formulated as the surface tension force, that minimizes
the surface area. The diffuse interface model is naturally compatible
with particle-based representations, since it does not require liquid
surfaces to be explicit.

3.1 Surface Tension Force

To calculate surface tension using the diffuse interface model under
the SPH framework, we simply define c = 1 at each particle, known
as the color field [Morris 2000; Müller et al. 2003]. We then calculate
∇ic as

∇ic =
∑

j Vj cj∇iW
h
ij∑

j VjW
h
ij

, (3)

in which Vj is particle j ’s volume, Wh
ij = W (rij , h) is a smooth-

ing kernel function with a radius h, and rij is the distance between
particle i and j . The normalization item

∑
j VjW

h
ij is used here to

compensate for missing air particles in free surface flows. Using
Eq. (3), we can then obtain κ

2 |∇ic|2 at each particle i. By treating it
as a smoothed energy density at each particle and ignoring the in-
fluence of other particles on it, we assume that E s can be minimized
by minimizing each energy density separately. This assumption al-
lows us to define the surface tension force using the gradient of the

Fig. 1. The surface tension force in three surface cases. In these cases, we
can model the surface tension force as the sum of attraction forces between
surface particles. It tries to deform convex and concave surfaces into flat
surfaces, where the surface tension energy gets minimized.

energy density:

Fs
i = Vi∇i

(κ

2
|∇ic|2

)
= κ

2

∑
j

ViVj |∇cj |2∇iW
h
ij . (4)

Intuitively, the surface tension energy density κ

2 |∇ic|2 can be con-
sidered an approximation to the local surface area of particle i. The
surface tension force tries to minimize it by summing up a set of
attraction forces. In ideal cases where interior particles have zero
surface areas and surface particles are explicitly specified, we can
simply treat the surface tension force as the sum of attraction forces
caused by neighboring surface particles, as Figure 1 shows. To en-
sure momentum conservation in practice, we calculate the average
of two surface tension energy densities and use it in the following
surface tension force formula:

Fs
i = κ

2

∑
j

ViVj

( |∇ci |2 + |∇cj |2
2

)
∇iW

h
ij . (5)

The main advantage of our method is its robustness against particle
sparsity, which is commonly noticed on thin features. Unlike the
CSF method that relies on ∇c to determine the normal direction
and the mean curvature, our method uses |∇c|2 to estimate the local
surface area only. So when normal estimation becomes problematic,
such as a liquid sheet made of a single particle layer, our method can
still calculate surface tension forces accurately. Figure 2 compares
our method with the CSF method [Müller et al. 2003] and the IIF
method in Becker and Teschner [2007] and shows that our method
is more robust in both 2D and 3D.

3.2 Air Pressure Force

Because of the air pressure force, water cannot leave solid surfaces
freely nor occupy air bubble volumes in the real world. The air
pressure force is straightforward to simulate in multiphase flows
using both liquid and air particles. For single-phase free surface
flows, Schechter and Bridson [2012] proposed to calculate the air
pressure force in a similar way by adding ghost air particles around
liquid surfaces. Since the use of air particles requires more memory
and computational cost, we propose a method to virtually account
for them as derived shortly to avoid the extra memory of air particles.

To begin with, let us first assume that air particles still exist. A
liquid particle i should be surrounded by both air particles and liquid
particles as Figure 3 shows. Let patm be the air pressure at each air
particle k. The air pressure force at particle i can be calculated as

Fa
i = −Vipatm

∑
k

Vk∇iW
h
ik. (6)
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Fig. 2. 2D and 3D comparison examples of the three surface tension meth-
ods. We simulate the concave examples by restraining liquid particles in a
closed container and applying both surface tension forces and air pressure
forces (to be discussed in Section 3.2).

Fig. 3. A surface particle with both air particles and liquid particles in its
neighborhood. By defining a negative air pressure at each neighboring liquid
particle, we can calculate the air pressure force without explicitly defining
air particles.

Assuming that air particles and liquid particles are smoothly and
uniformly distributed, we have∑

j

Vj∇iW
h
ij +

∑
k

Vk∇iW
h
ik = ∇1 = 0, (7)

in which the first term is summed over liquid particles and the
second over air particles. Using Eq. (7), we can replace the sum in
Eq. (6) and get

Fa
i = Vipatm

∑
j

Vj∇iW
h
ij . (8)

Intuitively, Eq. (8) formulates the air pressure force as the sum
of attraction forces, by assigning neighboring liquid particles with
positive air pressures.

To compare the performance of our method with the ghost SPH
method by Schechter and Bridson [2012], we create a solid sphere
example as shown in Figure 4 where 71K particles are involved.
This example indicates that both methods can produce the flowing

Fig. 4. Flowing water. While both the ghost SPH method and ours can be
used to simulate flowing water on a solid sphere, our method requires no air
particles and runs faster.

effect (together with our surface tension formula in Section 3.1), in
which water flows onto the solid surface and merges at the bottom
of the sphere. But since our method does not need air particles, it is
faster than the ghost SPH method and its computational cost is inde-
pendent of thin features. Furthermore, our method does not require
any extra memory cost in calculating the air pressure force while
the ghost method added approximately 25% memory overhead for
this example.

4. NUMERICAL INSTABILITY

Although the formulae proposed in Section 3 can robustly calculate
surface forces, we may still see thin liquid features being affected by
numerical instability. This issue is related to both attraction forces
and repulsion forces under the SPH framework.

The instability issue related to SPH-based attraction forces, in-
cluding our surface tension force and our air pressure force, is known
as tensile instability. To understand this problem, let us consider a
1D case containing one movable particle a and two fixed particles b
and c, as Figure 5(a) shows. We assume the particles have the same
size and that they are affected by attraction forces only. If a is ex-
actly in the middle of b and c, it receives zero total force and can stay
static. However, if a is positioned slightly closer to b due to numer-
ical errors, then the attraction force exerted on a by b will be larger
and the attraction force exerted on a by c will be smaller. So the
total force gets unbalanced and pushes a even closer to b. In simula-
tion, this will cause particles to form a set of clusters. According to
Swegle and collaborators [1995], the existence of tensile instability
can be mathematically identified as a sufficient condition σW ′′ > 0,
where σ is the stress state and W ′′ is the second derivative of the
smoothing kernel to the particle distance.

While SPH-based repulsion forces do not have the tensile in-
stability issue, they have their own instability issue as Figure 5(b)
shows. In this example where only repulsion forces exist, particle a
can stay at rest between b and c. But if a is positioned slightly off
the line, repulsion forces will push it out even further. As a result,
repulsion forces cannot maintain thin liquid features in free surface
flows, including thin jets and thin sheets. We note this problem does
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Fig. 5. 1D examples that demonstrate numerical instability issues in SPH-
based attraction and repulsion forces.

Fig. 6. A thin sheet. Without calculating internal pressure forces by our
method, the thin sheet ruptures into water drops after small perturbation as
(a) shows. Using our method, the sheet stays at rest as shown in (b).

not appear in multiphase flows, because surrounding air particles
will prevent liquid particles from escaping thin features easily.

The instability caused by attraction forces (also called tensile
instability) can occur everywhere, while the instability caused by
repulsion forces can occur on thin features only. In practice, we
do not notice tensile instability in water bodies, since repulsion
forces avoid particles from being arbitrarily close. However, tensile
instability becomes problematic for thin features with sparse parti-
cle sampling in the neighborhood, and internal pressure forces are
underestimated by most of the existing simulators.

Based on the previous analysis, we derive our solution against
numerical instability as follows. To reduce tensile instability, we
first increase internal pressure forces on thin features using two
smoothing kernels. Once repulsive internal pressure forces become
larger, their instability gets noticeable and needs to be addressed as
well. We then apply an anisotropic filter on internal pressure forces
so that their influence is limited within thin features. By calculating
internal pressure forces in this way, our system can robustly maintain
thin features, such as the thin sheet in Figure 6.

4.1 Two-Scale Pressure Estimation

When using a large smoothing kernel, most algorithms cannot dis-
tinguish the particle sparsity on thin features from that in low in-
ternal pressure regions. As a result, internal pressure forces are
often underestimated on thin features and cannot prevent tensile
instability from happening. Using a small kernel can reduce ten-
sile instability but, since fewer particles are involved in calculation,
the estimated pressure will be more noisy and less reliable.

To robustly estimate internal pressures for both water bodies and
thin features, our idea is to use small and large smoothing kernels
together. Let h = R be the radius of the large kernel and h = r
that of the small kernel. We first calculate the density using the
multiphase method proposed by Solenthaler and Pajarola [2008]

ρr
i = αm

∑
j
W r

ij and ρR
i = m

∑
j
WR

ij , (9)

in which m is the particle mass, α is a scaling factor that corresponds
to (r/R)3 in 3D space, and (r/R)2 in 2D space. We typically set
R = 2.5d and r = d , where d is the expected reference distance
between two particles. Then we use the local Poisson method [He

Fig. 7. Water jet. This example shows the Plateau-Rayleigh instability
effects of using different surface tension coefficients (in N/m).

et al. 2012a] to convert the two densities into two pressures pr
i and

pR
i , respectively. For efficiency, we only apply the specific formula

with the radius of the integration domain degrading to zero. The
pressure pR

i is more accurate for particles in water bodies, but
is underestimated for particles on thin features. Meanwhile, the
pressure pr

i is less reliable, but does not have the underestimation
issue on thin features. To provide a smooth transition from one to
another, we calculate the final internal pressure at particle i as

pi = max
(
pR

i , βpr
i

) + patm. (10)

The coefficient β in Eq. (10) serves two purposes. First, it ensures
that the pressure for particles in water bodies is not affected by
pr

i , which might contain noise. Second, it controls the magnitude of
repulsive internal pressure forces on thin features so that they do not
suppress attractive surface forces, especially surface tension. Since
the surface tension force is related to the surface tension energy
density, we use an empirical equation to define β

β = γ max
i

(κ |∇ic|2)/ max
i

(
pr

i

)
, (11)

where γ needs to be located in the range of [0, 0.5] to get a plausible
simulation result. The use of β can be considered a balance between
surface tension effects and thin features. A smaller β makes sur-
face tension effects more salient but destroys thin features, while
a greater β preserves thin features but weakens surface tension ef-
fects. We note that β is introduced completely from the algorithmic
perspective and has no physical meanings, but it provides us a con-
venient way to adjust the visual effects. We will demonstrate how
β can affect the fluid behavior by setting γ to different values in the
results section.

4.2 Anisotropic Pressure Filtering

After we fix tensile instability using the two-scale pressure esti-
mation method in Section 4.1, we now have to face the instability
caused by the increased internal pressure forces. This instability
problem is often exaggerated by the noise in pi , even after the use
of a small β in Eq. (10).

Inspired by the anisotropic surface reconstruction method pro-
posed by Yu and Turk [2010], we solve this instability by ap-
plying an anisotropic filter on internal pressure forces. Let Ci =∑

j (xj − xi)(xj − xi)TWR
ij be the anisotropic covariance matrix
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Fig. 8. Chocolate on bunny. This example demonstrates the effects of using different surface forces. We use both the surface tension force and the air pressure
force in most of the examples.

Fig. 9. Milk crown. This example shows how the pressure correction can affect the fluid behavior by setting γ to different values and that best results are
achieved with γ = 0.2.

defined at particle i. We propose a tensor matrix Ti as

Ti = pR
i

pi

I +
(

1 − pR
i

pi

)
Ci

‖Ci‖2
. (12)

For particles in water bodies, pi = pR
i and Ti is the identity matrix.

For particles on thin features, pi is larger than pR
i and Ti becomes

more anisotropic. Using this tensor matrix, we then formulate the
internal pressure force as

Fp
i = −1

2

∑
j

ViVj

(
piTi + pj Tj

) · ∇iW
h
ij . (13)

Intuitively, Eq. (13) diminishes the internal pressure effect in the
direction perpendicular to thin features. In this way, the internal
pressure force removes tensile instability, without destroying thin
features by its own instability issue. For particles in water bodies,
Eq. (13) is simply reduced to a standard formula with no anisotropic
filtering.

5. RESULTS

We integrated our methods into a local Poisson SPH solver and all
the smoothing kernels were chosen according to the work by Müller
and colleagues [2003] (please refer to the supplemental video for
the animation results). We used the parallel index sorting algorithm
presented by Ihmsen and colleagues [2011] to construct a uniform
grid and accelerate the neighborhood search. We used the level-set

approach proposed by Bhatacharya and collaborators [2011] for
liquid surface reconstruction. To model solid objects, we uniformly
created solid particles close to solid surfaces and treated them as
ghost liquid particles [He et al. 2012b]. In this case, we were able to
avoid artificial surface tension forces at the liquid-solid interfaces,
but could still provide sufficient air pressure forces to reflect the
correct cohesive behavior as shown in Figure 4. We tested our sys-
tem on a quad-core Intel Xeon W3550 3.07 GHz workstation with
6GB memory. We set the timestep as �t = 0.001s in simulation.
Table I shows the coefficients and timings (per timestep) of our
examples, including the number of particles N , the surface tension
efficient κ , the average computational time for surface forces t s, the
average computational time for internal pressures tp, and the total
computational time t tot.

Water Jet. Figure 7 compares the simulation effects of using
different surface tension coefficients. In this example, a water jet
breaks up into small water drops with the same volume but less
surface area. Commonly known as Plateau-Rayleigh instability,
this effect becomes more likely to happen when the surface tension
coefficient increases from left to right.

Chocolate on Bunny. Figure 8 demonstrates the simulation effects
with different surface force strengths. Without using the surface
tension force, liquid particles can leave the streamlets freely and
form a number of drops, as shown in Figure 8(a). Without using the
air pressure force, the streamlets do not flow on solid surfaces, as
shown in Figure 8(b). We obtain more physically plausible effects
by using both surface forces as shown in Figure 8(c).
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Fig. 10. Water on sphere. In this example, we compare the difference between the ghost SPH method (top) and our method both with (bottom) and without
(middle) the pressure correction. With the pressure correction, our algorithm effectively avoids numerical instability issues, but cannot prevent thin features
from being destroyed by resolution limits.

Milk Crown. Figure 9 compares the fluid behavior for different
values of γ . In the extreme case of γ = 0, a bunch of small droplets
will pinch off due to the numerical instability caused by the surface
tension. In the other extreme case of γ = 1, which means the

pressure will be overcorrected, the fluid fails to reveal the plausible
surface tension behavior. To balance between surface tension effects
and thin features, an appropriate choice is to set γ = 0.2 to get
plausible simulation results.
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Table I. Simulation Coefficients and Timings

κ t s tp t tot

Name N (N/m) (ms) (ms) (ms)

Water Jet 5.2K 0.015 – 0.09 1 2 20

Chocolate on Bunny 191K 0.035 49 41 281

Milk Crown 348K 0.015 124 133 752

Water on Sphere 71K 0.015 26 39 174

Water on Sphere. In this example, we present another example to
demonstrate the importance of our internal pressure force algorithm
for preserving thin features as Figure 10 shows. Here we directly
set γ = 0.2 and ignore the air pressure force to make the visual dif-
ference more noticeable. Without adjusting internal pressure forces,
the water film quickly ruptures into pieces. After using our tech-
nique, the water film is stable up to the point where it ruptures due
to resolution limits. We also made a comparison of our method with
the ghost SPH method, from which more thin features can be found
in the case with our method.

6. LIMITATIONS

Although our surface tension formula is more robust than the CSF
and IIF methods, it is still an approximation and not as accurate
as the ghost SPH method [Schechter and Bridson 2012]. To model
correct free surface behaviors, both the surface tension force and
the air pressure force must be calculated together. Some of the
coefficients in our algorithms (including κ and β) are not based
on physics and need to be tuned for different examples. Although
the two surface forces can be integrated into any existing SPH
solvers (including WCSPH, PCISPH, LPSPH, etc.), the two-scale
pressure estimation method is only suitable for EOS-based solvers
(see Ihmsen et al. [2014] for a thorough discussion on EOS-and
non-EOS-based solvers). Meanwhile, our system does not address
the resolution limit issue, so cannot handle thin features whose
sizes are less than a single particle. It cannot be used to animate
air bubbles in large water bodies, since it does not consider air
compressibility, nor does it consider solid surface properties or
wetting effects, so it cannot model complex solid influence on liquid,
such as hydrophobic effects. Finally, how to preserve thin features
during the liquid surface reconstruction process is still a difficult
problem, since thin features may be erroneously identified as noise.
Using a smaller smoothing kernel can preserve thin features, but
may not be sufficient for removing actual noise, as we found in
some examples.

7. CONCLUSION AND FUTURE WORK

In this article, we identified that surface forces and numerical in-
stability are the two main factors affecting sparsely sampled thin
features in SPH-based free surface flows. We demonstrated the use
of the free surface energy functional in formulating surface tension
forces, and we studied the potential of handling air pressure effects
without using air particles. We proposed a novel algorithm to cal-
culate internal pressure forces on thin features, which effectively
reduces numerical instability issues.

We plan to test the compatibility of our system with graphics
hardware acceleration. We are also interested in combining it with
the mesh-based tracking method [Yu et al. 2012] to simulate those
effects that our current system cannot handle. In the long term, we
would like to explore the possibility of using free surface flows to
animate complex liquid-solid interactions and air bubbles in large

water bodies, most of which could be simulated only by multiphase
flows in the past.
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