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Figure 1: Left: fluid flowing around a cylinder with no-slip boundary condition in two dimensions. Right: dam break of fluid flowing around
rotating cylinders with no-slip boundary condition in three dimensions.

Abstract

Simulating solid-fluid coupling with the classical meshless methods
is an difficult issue due to the lack of the Kronecker delta proper-
ty of the shape functions when enforcing the essential boundary
conditions. In this work, we present a novel staggered meshless
method to overcome this problem. We create a set of staggered
particles from the original particles in each time step by mapping
the mass and momentum onto these staggered particles, aiming to
stagger the velocity field from the pressure field. Based on this
arrangement, an new approximate projection method is proposed
to enforce divergence-free on the fluid velocity with compatible
boundary conditions. In the simulations, the method handles the
fluid and solid in a unified meshless manner and generalizes the
formulations for computing the viscous and pressure forces. To en-
hance the robustness of the algorithm, we further propose a new
framework to handle the degeneration case in the solid-fluid cou-
pling, which guarantees stability of the simulation. The proposed
method offers the benefit that various slip boundary conditions can
be easily implemented. Besides, explicit collision handling for the
fluid and solid is avoided. The method is easy to implement and
can be extended from the standard SPH algorithm in a straightfor-
ward manner. The paper also illustrates both one-way and two-way
couplings of the fluids and rigid bodies using several test cases in
two and three dimensions.
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1 Introduction

The solid-fluid interactions are common in everyday life, such as
when pouring beer into a glass, dropping a stone into the water, etc.
In the documented meshless methods, much attention has been paid
to the fluid animations, such as the works [Adams et al. 2007; So-
lenthaler and Pajarola 2009; Solenthaler and Gross 2011] based on
the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
However, under this purely Lagrangian framework, only few works
have dealt with the coupling problem since there are still several
problems in the SPH which have not been fully addressed [Liu and
Liu 2010]. For example, due to the lack of the Kronecker delta
property of the shape functions, the free-slip and no-slip boundary
conditions cannot be imposed as easily as in a mesh-based method.
The spurious zero-energy modes are also well known for the null-
space issues, which is caused by the fact that the field variables and
their derivatives are calculated at the same positions. As a result,
high-frequency oscillations in the variable field may persist or even
grow up that will lead to the simulation failure.

Referring to the grid-based methods, a novel “MAC-grid”as shown
in Figure 2 (left) [Harlow et al. 1965] is commonly used to over-
come the problem of the zero-energy modes. Inspired by this bril-
liant work, [Vignjevic et al. 2000; Randles and Libersky 2000] ex-
tended the SPH to a stress-point formulation which was composed
of the stress particles and velocity particles. With this arrangement,
the zero-energy modes can be trivially avoided as the colocational
nature of the standard SPH is removed by adding the stress parti-
cles. The boundary treatment is also simple, since it is possible to
use either type of the particles to enforce the boundary conditions.
However, this method has several disadvantages that make it inap-
propriate to apply directly to the solid-fluid interactions. One ma-
jor problem comes from the irregular distributions of the particles
in the simulation. Both compression and expansion of the parti-
cles can severely degrade the solution, resulting in the simulation
failure. Besides, the interleaved pattern of the stress particles and
velocity particles cannot be well preserved if complex fluid interac-
tions with the solid occur. In addition, the problems, such as extra
computing cost of finding the neighbors for stress particles and the
numerical dissipations, also limit the application of this method.

In this paper, a new arrangement of different particles is devised
as shown in Figure 2 (right). To ensure the stability, we enforce
the density constraint on the carrier particles, which represent the
discretization of the problem domain, and create the staggered par-
ticles at each time step at the positions between each pair of the
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velocity pressure carrier particle staggered particle 

Figure 2: Left: field variable value placement in MAC grid, ve-
locities are defined at cell boundaries while pressures are defined
at cell centers. Right: particle placement of our method where the
staggered particles are created from carrier particles at each time
step to avoid simulation failure. Here only the staggered particles
related to the orange ones are shown.

neighboring carrier particles. Based on the different types of parti-
cles, an approximate projection method will be further developed to
enforce the divergence-free on the fluids with the required boundary
conditions, which is the key to model various solid/fluid interaction-
s. To impose the free surface boundary condition, a robust method
to detect the surface particles is also given. Then, the free surface
boundary and various solid wall boundary conditions can be exert-
ed on the carrier particles and staggered particles, respectively. In
our unified meshless handling of the fluids and rigid bodies, we ex-
tended the formulations of the viscous and pressure forces given by
[Müller et al. 2003] to handle the discontinuities at the solid/fluid
boundary. As a result, no explicit collision detection algorithm is
required to prevent the fluid particles from penetrating into the sol-
id due to the use of the generalized pressure force, and various slip
boundary conditions can be implemented with the assistance of the
staggered particles and the generalized viscous force.

2 Related Work

There are a variety of computational methods to simulate the fluids
and their interactions with the solids. A dominant approach referred
as the “voxelized pressure solve” can be traced back to [Foster and
Metaxas 1996] who imposed boundary conditions onto the grid by
voxelizing the solid obstacles. [Stam 1999] followed this treatmen-
t and proposed an unconditionally stable model for producing the
complex fluid-like flows. However, this method generalized signif-
icant stair-step artifacts if the boundaries were not aligned with the
grids. Later, [Foster and Fedkiw 2001] presented a general method
for modeling and animating the liquids, and attempted to mitigate
the artifacts by only enforcing the boundary conditions in normal
directions, leaving the tangential part of the velocities unchanged.
[Enright et al. 2002b] also used this improvement. As all these
works only dealt with the one-way coupling, [Takahashi et al. 2002]
introduced a simple two-way coupling between the fluids and rigid
bodies based on an explicit two-level collision detection algorith-
m. [Houston et al. 2003] proposed an extension to the previous
works, intending to unify the treatment of static and dynamic ob-
jects with the level set method. Unfortunately, all these methods
still suffer from the previously mentioned artifacts. More recently,
[Batty et al. 2007] observed the equivalence between minimizing
the total kinetic energy and solving the fluid incompressibility with
compatible solid boundary conditions for the rigid-fluid coupling.
They have introduced a new variational framework to achieve a ful-
ly implicit two-way coupling which was free of the grid artifacts
even on the coarse grid.

Another group of researchers typically use an Euler formulation for
the fluid and a Lagrangian formulation for the solid [Yngve et al.

2000; Génevaux et al. 2003; Carlson et al. 2004]. [Guendelman
et al. 2005] presented a novel approach to treat an infinitesimally
thin solid modeled by using lower dimensionally triangulated sur-
faces. They used a robust ray casting method to avoid the fluid
leaking through the triangulated surface. [Robinson-Mosher et al.
2008] pointed out that the impulse distribution necessary to main-
tain the contact varies with the material densities for the dual cell
in voxelized methods such as [Batty et al. 2007]. The nonphysi-
cal pressure profile may result in an incorrect torque. Instead of
explicitly enforcing the velocity compatibility on the dual cell cen-
ters, they derived an implicit solid-fluid coupling method based on
the law of conservation of momentum. [Robinson-Mosher et al.
2009] further improved this work to obtain more accurate tangential
velocities for the solid-fluid coupling, which allows for the freely
flowing tangential velocities.

Alternatively, one can use fully Lagrangian meshless methods for
both the fluid and solid [Müller et al. 2004a; Keiser et al. 2005;
Solenthaler et al. 2007; Lenaerts et al. 2008]. However, imposing
boundary conditions in the meshless methods is not as straightfor-
ward as that in the mesh-based methods and thus this has been tra-
ditionally regarded as one weakness of the meshless methods [N-
guyen et al. 2008; Liu and Liu 2010]. In most SPH simulations,
the solid boundary conditions are enforced by using either penalty
forces [Monaghan 1994; Monaghan 2005; Solenthaler et al. 2007]
or the virtual particles [Morris et al. 1997; Yildiz et al. 2009]. Only
a few approaches have tried to model different kinds of boundary
conditions and taken into account the actual forces exerted on the
solid to achieve a two-way coupling. [Müller et al. 2004b] present-
ed a method to model the interactions of fluids with a deformable
solid based on the Lennard-Jones forces between the boundary par-
ticles and their neighboring fluid particles. [Oger et al. 2006] ex-
tracted local pressures near the solid boundary to achieve the two-
way coupling of the particle-based fluids and a moving solid object
in two dimensions. [Becker et al. 2009] considered a wide range of
slip and Neumann boundary conditions by employing a direct forc-
ing method. Thus both one-way and two-way solid-fluid coupling
with the arbitrarily shaped boundaries can be effectively accom-
plished. However, since all these methods only take into account
the local interactions of particles near the solid boundaries, the re-
sulting velocity discontinuity may lead to the simulation failure. In
contrast to this, the method proposed in this paper aims to solve the
pressure field in the whole fluid domain to enforce both the fluid
incompressibility and the solid boundary conditions.

3 Overview

The governing equations for a viscous fluid are written in a La-
grangian form as

1

ρ

Dρ

Dt
+∇ · v = 0 (1)

Dv

Dt
= −1

ρ
∇p+ µ∇2v + f (2)

The two equations represent the conservation of mass and momen-
tum, respectively. The vector field v is the fluid velocity, f is the
external force. The scalar field ρ is the fluid density, p is the pres-
sure, and µ is the kinematic viscosity. We have used the shorthand
notation ∇2 = ∇ · ∇ where the symbol ∇ is the vector of spatial
partial derivatives with the form (∂/∂x, ∂/∂y) in two dimensions
and (∂/∂x, ∂/∂y, ∂/∂z) in three dimensions.

For an ideal incompressible fluid, the density of each particle needs
to be maintained constant during the whole simulation. More pre-
cisely, that is Dρ/Dt = 0 referred to as the density constraint
[Bodin et al. 2011]. The other constraint referred to as the velocity
constraint follows from the continuity equation 1 as ∇ · v = 0.
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In the grid-based methods, due to the pre-assumption of constant
density, the researchers usually ignore the density constraint [Stam
1999; Batty et al. 2007]. However, both the density constraint and
velocity constraint need to be considered in the meshless methods
[Liu et al. 2005]. Therefore, we divide the pressure p into two parts:
one is the density constraint pressure pd, which enforces the den-
sity of every particle to be unchanged, and the other is the velocity
constraint pressure pv , which enforces the fluid velocity field to be
divergence-free with compatible boundary conditions.

According to the above discussion, we improve the prediction-
correction scheme proposed by [Shao and Lo 2003] to solve the
incompressible fluid. At the prediction stage, along with the vis-
cous and external forces, the pressure force contributed by pd is
also included in the Navier-Stokes equation to get an intermediate
temporal velocity

ṽ = v + ∆t

(
−1

ρ
∇pd + µ∇2v + f

)
(3)

After integrating the velocity field forward for the position with
x+ = ∆tṽ, we can get a density constraint enforced fluid with ρ
being constant for each particle.

For now, the velocity constraint is not satisfied, and a correction
step is required to solve pv . The new velocity after correction by
pv can be written as

vnew = ṽ − ∆t

ρ
∇pv (4)

where vnew satisfies the velocity constraint ∇ · vnew = 0. Sub-
stituting equation 4 into the velocity constraint, we can get the fol-
lowing pressure Poisson equation

∇ ·
(

1

ρ
∇pv

)
=
∇ · ṽ
∆t

(5)

with which we can solve pv . We then substitute pv back into equa-
tion 4 to get the new velocity. More details on how to solve both pd

and pv in the solid-fluid coupling will be illustrated in the following
sections.

4 Staggered SPH

Our incompressible fluid solver is based on SPH (see [Liu and Liu
2010] for a good overview). In this purely meshless method, the
problem domain is represented by a set of particles. Each particle
Pi is defined by its position xi, its mass mi, and the smoothing
radius h. A physical quantity 〈q〉 of particle Pi can be computed by
summing up the contributions of all its neighboring particles Pj

〈qi〉 =
∑
j

mj

ρj
qjW (|xi − xj | , h) (6)

where Vj is the volume of particle Pj andW is the smoothing func-
tion with compact support domain Ωi.

Before proceeding with our staggered meshless method, it will be
convenient to introduce some additional notations. In general, we
call the originally discretized particles (for both fluid and solid) as
carrier particle (also particle for short) and the newly created par-
ticles as staggered particle to reflect the feature of where they are
created. A subscript with form “i-j” is used to mark the staggered
particle Pi−j between the particle Pi and its neighboring particle
Pj . The relative quantities of Pi−j are thus written as xi−j for
the position, mi−j for the mass and vi−j for the velocity. Super-
scripts “f” and “s” represent the fluid and the solid, respectively.

We do not distinguish between the fluid and solid particles if no
superscripts are given. Based on above convention, an overview of
enforcing the velocity constraint on the fluid is described as follows

ṽi, ṽj

mapping︷︸︸︷
−→ ṽi−j

projection︷︸︸︷
−→ vnewi−j

remapping︷︸︸︷
−→ ṽnewi , ṽnewj

After the prediction stage, a set of staggered particles with the ve-
locity ṽi−j are first created by mapping the carrier particles’ mass
and momentum onto the staggered particles (Section 4.1). Then, in
order to enforce the divergence-free on ṽi−j , an new approximate
projection method is proposed to solve the velocity constraint pres-
sure pvi defined on particle Pi(Section 4.2). Finally, the staggered
particle velocity vnewi−j is remapped to get the final velocity ṽnewi of
particle Pi (Section 4.3).

4.1 Staggered Particles

To create the staggered particle Pi−j , we take into account the two
neighboring particles Pi and Pj . Three major physical quantities
of Pi−j need to be identified for further use, including the mass
mi−j , the velocity ṽi−j and the position xi−j . For simplicity, we
suppose that xi−j is located at the middle point on the line segment
which connects particle Pi and Pj , and the other quantities are only
contributed by these two particles.

Figure 3: Illustration for determining the neighbors of both the
fluid (blue) and solid (orange) particles.

Since the newly created staggered particles can be viewed as an-
other discretization of the problem domain, both the mass and mo-
mentum conservation should be guaranteed during the mapping. To
transfer the mass onto the staggered particles, we use a further hy-
pothesis that each particle Pi contributes its mass mi equally to its
Ni neighboring staggered particles. For the fluid particle P fi , mf

i

corresponds to the initialized particle mass andNf
i is the number of

its neighbors. However, if P si belongs to a rigid body, care should
be taken in assigning values to ms

i and Ns
i . As we know, for ideal

rigid bodies, impact on one position of a rigid body will be instant-
ly transmitted to the other part of the object. Thus, it is reasonable
for us to assign the total mass ms of a rigid body to its subordinate
particle, that is ms

i = ms. In computing Ns
i , we need first find

neighbors for each individual particle P si . Then, we only sum up
neighbors that belong to the fluid and assign the value to Ns

i . In
other words, Ns

i represents the fluid neighbors of a rigid body if
we view the rigid body as a particle as well. Based on the above
discussion, mass of the staggered particle Pi−j can now be written
as the following unified form

mi−j =
mi

Ni
+
mj

Nj
(7)

which also be easily verified that the total mass of staggered parti-
cles equals to the original system. If we denote the part contributed
by Pi as Pi− and the other part as Pj−, by lumping Pi− and Pj−
together as shown in Figure 4 (left), the velocity of Pi−j can now
be written as

ṽi−j =
mi−ṽi +mj−ṽj

mi−j
(8)
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according to the momentum conservation law. Here mi− and mj−
indicate the mass of Pi− and Pj−, respectively. The mixed vol-
ume Vi−j and density ρi−j are derived from the incompressibility
assumption and written as

Vi−j =
mi−

ρi
+
mj−

ρj
and ρi−j =

mi−j

Vi−j
(9)

Likewise, we will use Vi− and Vj− to denote the volume of Pi−
and Pj− in the following context.

Figure 4: Left: the staggered particle created between the two
neighboring particles Pi and Pj . Right: the redundant staggered
particle Pj−k existed inside the support domain Ωi of a particle Pi.

If we take a look at the staggered particles’ distribution inside the
support domain Ωi of a particle Pi, a lot of redundant staggered par-
ticles, such as Pj−k shown in Figure 4 (right), can also be found in
Ωi. However, in the discretization for 〈∇ · ṽi〉, only the staggered
particles between Pi and its neighboring particles are considered.
The divergence of velocity defined on particle Pi can thus be dis-
cretized as

〈∇ · ṽi〉 = −
∑
j

mi−j

ρi−j
ṽi−j · ∇W (rij/2, h) (10)

by considering |xi − xi−j | = rij/2. Here we denote rij =
|xi − xj |.

4.2 Approximate Projection

The projection method is based on the Helmholtz decomposition
[Petronetto et al. 2010], which states that any vector field can be
resolved into the sum of an irrotational (curl-free) vector field and a
solenoidal (divergence-free) vector field. A variety of projection al-
gorithms exist both in the grid-based and meshless methods, which
either use an exact projection or an approximate projection. [Cum-
mins and Rudman 1999] first introduced an approximate projec-
tion method for SPH. This method can effectively prevent the prob-
lem of pressure decoupling which arises when an exact projection
is used. Later, [Shao and Lo 2003] improved on the approximate
Laplacian operator to get a symmetric form. However, the authors
didn’t give an intuitive explanation for why it worked with the ap-
proximate Laplacian operator. In addition, the difficulty of exerting
solid wall boundary conditions remains unresolved.

Based on the staggered particles, we can derive a more intuitive
approximate Laplacian operator with the additional advantage that
solid wall boundary conditions can be easily applied. During the
derivation, we follow the convention given by [Cummins and Rud-
man 1999] to define the Laplacian operator asL = DσG, whereD
is the divergence operator, G is the gradient operator and σ = 1/ρ.
In the discretization of L, the gradient operator G is defined on the
staggered particles. Since Pi−j is only related to particle Pi and
Pj , we simply use a finite difference method to define G as

Gpvi−j =
pvj − pvi
rij

nvij (11)

where Gpvi−j represents the pressure gradient at xi−j and nvij in-
dicates the direction of the velocity constraint pressure force which

will be detailed in section 5.2. If both particle Pi and Pj belong to
the fluid, nvij can be written as (xj − xi)/|xj − xi|. Otherwise, it
depends on the imposed solid wall boundary conditions. With the
same technique for discretizing 〈∇ · ṽi〉, we can define the approx-
imate Laplacian Lpvi on particle Pi as follows

Lpvi = 〈∇ ·
(

1
ρ
Gpv

)
i
〉

= −
∑
j

mi−j

ρ2
i−j

pvj−p
v
i

rij
nvij · ∇W (rij/2, h)

(12)

Substituting both equation 12 and equation 10 into the pressure
Poisson equation 5, we can get∑

j

mi−j

ρ2
i−j

pvj−p
v
i

rij
nvij · ∇W (rij/2, h)

= 1
∆t

∑
j

mi−j

ρi−j
ṽi−j · ∇W (rij/2, h)

(13)

to solve pvi for each particle Pi. As a result, the velocity of Pi−j
can be updated as follows

vnewi−j = ṽi−j −
∆t

ρi−j
Gpvi−j (14)

In our purely meshless method, the solvability of correct pvi large-
ly depends on whether the particles are well-distributed. Since the
staggered particles are recreated at each time step from the carrier
particles, we only need to guarantee the well distribution of the car-
rier particles, which is equivalent to enforcing the density constrain-
t. Without considering the the density constraint, fluid particles
can clumped as shown in Figure 5 (left), which eventually leads to
the simulation failure. However, solving another Poisson equation
for pd is time consuming, thus [Losasso et al. 2008] combined the
two Poisson equations together to solve a mixed pressure pd + pv .
Unfortunately, the particle clumping problem still exists, as shown

Figure 5: Left: only enforcing the velocity constraint, resulting in
heavy particle clumping in certain direction. Middle: enforcing
both the density constraint and the velocity constraint by solving a
mixed pressure Poisson equation, the problem of particle clumping
still exists. Right: enforcing both the density constraint and the
velocity constraint with our method, robust simulation is obtained.

in Figure 5 (middle). To achieve both the efficiency and stability,
we apply a similar strategy with [Raveendran et al. 2011] to iter-
atively adjust the fluid density before solving the pressure Poisson
equation. At the beginning of each iteration, the equation of state
(EOS) from LPSPH [He et al. 2012] is used to estimate the density
constraint pressure pd. Then, a generalized formulation is used to
compute the density constraint force Fdensityi (detailed in Section
5.1) to avoid the penetration of fluid particles into the solid. The
iterative adjusting of the carrier particles’ position maintains a rel-
atively uniform distribution of the carrier particles. Figure 5 (right)
shows the good result obtained with our method by enforcing both
the density constraint and velocity constraint.

4.3 Remapping

As we know, the primary strength of grid-based methods comes
at the simplicity of discretizing problem domain and enforcing the
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incompressibility. Unfortunately, these methods suffer from the d-
ifficulty of fluid tracking. To solve this problem, marker particles
[Harlow et al. 1965; Enright et al. 2002a] are commonly used as
an assistant for advection. There are typically two approaches to
handle this advection. Particle-in-cell (PIC) [Harlow 1962] was an
early method designed to solve compressive flow, but with a major
problem of numerical dissipation which was caused by repeatedly
averaging and interpolating the grid variables. Later, [Brackbill and
Ruppel 1986] proposed the fluid-implicit-particle (FLIP) method,
and achieved indissipative model by only considering the changes
of the grid velocity. In our staggered meshless method, the carrier
particles play the same role as marker particles for the fluid track-
ing, thus requiring us to update the carrier particle velocity after
solving the pressure field pv . However, the position updating will
be delayed until all other explicit forces are added up according to
equation 3. To avoid the numerical dissipation, we derive a new
velocity updating method for the staggered meshless method based
on the principle of momentum conservation.

Following the discussion of [Robinson-Mosher et al. 2008], we in-
troduce a virtual pressure pvi−j at xi−j (Figure 6 (left)) and unlump
the staggered particle Pi−j into Pi− and Pj− to compute their re-
spective gradient. Given the pressure pvi and pvj of particle Pi and
Pj , the momentum increments of Pi− and Pj− can be written as

∆Mi− = −∆t
pvi −p

v
i−j

ri−
Vi−n

v
ji

∆Mj− = −∆t
pvj−p

v
i−j

rj−
Vj−n

v
ij

(15)

where ri− denotes |xi − xi−j | and rj− denotes |xj − xi−j |.
Then, the new velocities of Pi− and Pj− can be updated to

vnewi− = vi +
∆Mi−

mi−
and vnewj− = vj +

∆Mj−

mj−
(16)

Now, if we lump Pi− and Pj− together, vnewi− and vnewj− should sat-
isfy vnewi− = vnewj− . Besides, according to the principal of momen-
tum conservation law, the total momentum change of Pi− and Pj−
should be equal to the momentum change ofPi−j , which results an-
other relationship ∆Mi− + ∆Mj− = ∆Mi−j . Combining these
two relations together, we can eliminate the unknown variables and
compute the momentum change for Pi− and Pj− as

∆Mi− =
mi−
mi−j

∆Mi−j +
mi−mj−
mi−j

(vj − vi)

∆Mj− =
mj−
mi−j

∆Mi−j +
mi−mj−
mi−j

(vi − vj)
(17)

Figure 6: Left: A graph of the pressure gradient profile on the
staggered particle Pi−j . Right: momentum transfer due to the stag-
gered particle Pi−j .

From another point of view, if we consider Pi− and Pj− as a frac-
tion of particle Pi and Pj , the momentum increments of Pi and Pj

due to Pi− and Pj− are written as

∆Mi,i−j = −∆t
pvi−j−p

v
i

ri−
Vi−n

v
ij

∆Mj,i−j = −∆t
pvi−j−p

v
j

rj−
Vj−n

v
ji

(18)

By considering nvji = −nvij , we can easily verify that ∆Mi,i−j =
∆Mi− and ∆Mj,i−j = ∆Mj−.

Eventually, we can derive the following equation to update the fluid
velocity

∆vfi = −∆t

Ni

∑
j

1

ρi−j
Gpvi−j (19)

where we have ignored the last term of equation 17 for the reason
that the viscous force will be modeled separately in section 5.1.

In fact, we can view our staggered SPH method as a variant of the
FLIP method with a moving computing grid where we have elegant-
ly combined the traditional fixed grid and marker particles together
to form a unified meshless method. Although FLIP usually per-
forms more efficiently for fluid simulations with compact domains
and static boundaries, our method are more intuitive and powerful
for the fluid simulation with dynamic boundaries, such as the two-
way solid-fluid coupling.

5 Solid-Fluid Coupling

Since our method focuses on the unified handling for both the fluid
and solid, we use the same way as fluid to discretize a rigid body in-
to a set of solid particles. At each particle P si , we define its signed
distance to surface as φsi [Adams et al. 2007]. By applying the
discretization technique in SPH, the local unit normal pointing out-
ward can then be computed as follows

nsi = −αi
∑
j

ms
j

ρsj
φsi∇W

(∣∣xsi − xsj
∣∣ , h) (20)

where αi is a coefficient for the normalization. In order to constrain
the motion of a rigid body to translation and rotation, we need to
accumulate the total forces acting on the solid particles

Fs =
∑
i

Fsi and τs =
∑
i

(xsi −Xs)× Fsi (21)

where Xs
i is the center of mass, Fsi denotes the total force exerted

on the solid particle P si , Fs and τs represent the total force and
torque of the rigid body.

In the traditional meshless methods, there is no efficient way to im-
pose essential boundary conditions due to the lack of the Kronecker
delta property of shape functions, resulting in the difficulty in im-
plementing the solid-fluid coupling. However, in our method, a set
of staggered particles are also created between the fluid particles
and solid particles, which can be used to impose various boundary
conditions easily. According to equation 3 and 5, three force type-
s are involved in computing the total force exerted on each particle
Pi, which include the viscous force Fviscousi , the density constrain-
t force Fdensityi and the velocity constraint force Fvelocityi . If we
look deep into the interaction between two neighboring solid parti-
cles, we can easily verify that the resultant force and torque are zero
for the rigid body. Thus we only need to consider the fluid-fluid and
fluid-solid interactions. In the following context, if not specified,
we will not distinguish between the fluid and solid particles.
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5.1 Generalized Forces

To handle the density discontinuities at interface between the fluid
and solid, we compute the density of fluid particle P fi according
to the formulation for multiple fluids proposed by [Solenthaler and
Pajarola 2008]

ρfi = mf
i

∑
j

W
(∣∣xfi − xj

∣∣ , h) (22)

The density of solid particle is initialized at the beginning of simu-
lation and remains unchanged. The density constraint pressure pdi
for Pi can then be computed according to LPSPH [He et al. 2012]
with the special case h̄max = 0. In order to treat Fdensityi and
Fviscousi in a unified manner, we now generalize the formulations
given by [Müller et al. 2003].

Generalized pressure force In continuum mechanics, it usually
regards the fluid stress tensor as the sum of a spherical part −pI
and a deviatoric part µ∇v. If we consider a surface element of the
solid with normal n, the spherical part will always act the pressure
force on the surface in the normal direction. To reflect this feature,
the generalized pressure force can be written as follows

Fdensityi = −
∑
j

mj

pdi + pdj
2ρj

∂W (|xi − xj | , h)

∂ndij
(23)

where ∂W (|xi − xj | , h)/∂ndij represents the directional deriva-
tive of the smoothing function W , ndij indicates the force direction
of particle Pj exerting on Pi. Depending on the different types of
Pi and Pj , ndij can be written as

ndij =


(xj − xi)/|xj − xi|

nsi
−nsj

if , jf

is, jf

if , js

where if means particle Pi belongs to the fluid and is means par-
ticle Pi belongs to the solid. From the above formulation, we can
also find that the generalized pressure force retains the symmetry of
forces between Pi and Pj .

Generalized viscous force Now we take a look at the deviatoric
part µ∇v. it acts the viscous force tangentially on the surface ele-
ment, which also indicates that only the tangential part of the fluid
velocity will be damped down by the solid. The generalized viscous
force can then be written as

Fviscousi =
∑
j

mj
√
µiµj

ρj
T (vj − vi)∇2W (|xi − xj | , h)

(24)
The velocity mapping operator T is defined as below

T =


I

I− (nsi ) (nsi )
T

I−
(
nsj
) (

nsj
)T

if , jf

is, jf

if , js

where I is the identity mapping. When either particle Pi or Pj
belongs to the solid, T maps the relative velocity vj − vi to its
tangential component. As a result, various slip boundary conditions
can be achieved by controlling the value of µs for the solid.

5.2 Boundary Conditions

The solvability of the pressure Poisson equation 5 also depends
on the appropriate imposing of the free surface and solid bound-
ary conditions on the fluid. To impose the free surface boundary
condition, we detect the surface particles near air to set their ve-
locity constraint pressure pvi to zero. To impose various slip solid
boundary conditions, difficulties arise in previous incompressible
SPH (ISPH) [Lee et al. 2008] method. However, our method can
easily handle various slip conditions by enforcing different veloci-
ty constraints on the staggered particles, including both the no-slip
and free-slip conditions.

Free surface boundary condition Since no particles exist be-
yond the free surface, one can take into account the asymmetry of
particle distribution to identify free surface particles. We first define
the measurement of asymmetry for a fluid particle P fi as follows

Asyfi =

∣∣∣∣∣xfi −∑
j

xjW̃
(∣∣xfi − xj

∣∣ , h)∣∣∣∣∣ (25)

where W̃ represents the normalized smoothing function satisfying∑
j
W̃ (xj − xj , h) = 1. The larger value Asyfi is, the more like-

ly P fi belongs to the free surface. However, if the fluid particle
density ρfi is too far away from the reference density ρ̄fi , Asyi
cannot give a good reflection on the particle distribution feature.
According to these two understandings, we give the criterion for i-
dentifying the free surface particles in our implementation as those
meet

Asyfi > 0.3h or ρfi < 0.7ρ̄fi

Besides, a further step is required to identify the isolated regions
where no surface particles are detected. We explicitly mark all these
particles as surface particles to ensure the solvability of the linear
system. The identified free surface particles at different times are
shown in Figure 7 with the 2D dam break case. We can find that
almost all surface particles on the free surface have been detected,
but not all. However, this is acceptable as the undetected surface
particles still have pressure very close to zero. By including the
solid particles, we also effectively avoid the false detection for free
surface particles at the interface between the fluid and solid.

Figure 7: Detected boundary particles (red) for the 2D dam break
case.

Solid boundary conditions Now, we would like to impose con-
straints on the relative velocity of the fluid and solid. The no-slip
condition for viscous fluids states that the fluid at the solid surface
has zero velocity relative to the solid boundary. However, the free-
slip boundary condition only constrains the normal component of
the relative velocity to zero. To impose these constraints, we can
view the staggered particles between the fluid particles and solid
particles as a discretization of the contact surface between the flu-
id and solid. Since each staggered particle is only related to its two

149:6        •        X. He et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 149, Publication Date: November 2012



neighboring carrier particles, we can easily impose different bound-
ary conditions on the staggered particle. By taking into account a
staggered particle Pi−j between a fluid particle P fi and a solid par-
ticle P sj , the solid boundary velocity at position xi−j is set to the
velocity of P sj , which is usi−j = Us+ω×(xj −Xs) where Us is
the translational velocity and ω is the angular velocity of the rigid
body. Since the no-slip condition requires that vnewi−j = usi−j , we
can easily get

Gpi−j =
ρi−j
∆t

(
ṽi−j − usi−j

)
(26)

by substituting the requirement into equation 14. In the same way,
we can also substitute the free-slip condition vnewi−j ·nsj = usi−j ·nsj
into equation 14 to get

Gpi−j =
ρi−j
∆t

[(
ṽi−j − usi−j

)
· nsj
]
nsj (27)

which will leave the tangential component of the relative velocity
unchanged. Accompanied with the free surface boundary condi-
tion, either equation 26 or equation 27 can be substituted into the
discretized pressure Poisson equation 13 to implement the required
slip boundary condition. For completeness, we give the formulation
of the velocity constraint force Fvelocityi as follows

Fvelocityi = −mi−

∑
j

1

ρi−j
Gpvi−j (28)

Here Gpvi−j is related to both the type of the two neighboring car-
rier particles and the imposed solid wall boundary condition, which
can be represented in the following unified formulation

Gpvi−j =


[(
pvj − pvi

)/
rij
]
nvij

ρi−j

∆t

[(
ṽi−j − usi−j

)
· nvij

]
nvij

− ρi−j

∆t

[(
ṽi−j − usi−j

)
· nvij

]
nvij

if , jf

if , js

is, jf

where nvij for the free-slip boundary condition is just the same as
ndij , and nvij for the no-slip boundary condition is defined below

nvij =

{
(xj − xi)/|xj − xi|(

ṽi−j − usi−j
)/∣∣ṽi−j − usi−j

∣∣ if , jf

if , js or is, jf

Figure 8: Top: the fluid sticks to the solid wall unnaturally with
the usage of the standard free-slip solid wall boundary condition.
Bottom: the fluid can be separated from the solid wall plausibly
with our treatment.

When implementing the free-slip boundary condition, a common
numerical artifact resulting from vnewi−j · nsj = usi−j · nsj is that
the fluid will stick to the solid wall and even crawl along the wal-
l. In grid-based method, [Batty et al. 2007] solved this problem

by introducing a complementarity condition to convert the kinet-
ic energy minimization problem into an inequality-constrained QP
problem. Unfortunately, the low performance of QP solver reduces
the efficiency of the simulation. In our staggered meshless method,
to avoid the particle sticking, we use an trick by only imposing the
solid boundary condition on the staggered particles that approach
the wall. More precisely, it states as (usi−j−vnewi−j ) ·nsj ≥ 0. Com-
pared to the treatment given by [Batty et al. 2007], our method does
not reduce the simulation efficiency since no boundary condition
of inequality is included. Figure 8 demonstrates a comparison be-
tween the standard free-slip boundary condition and the no-sticking
free-slip boundary condition.

6 Implementation

Algorithm 1 Staggered Meshless Coupling

1 while animating do
2 add body force and generalized viscous force Fviscous

3 predict fluid and solid velocities and positions
4 compute density constraint pressure pd (Algorithm 2)
5 update solid velocities
6 compute velocity constraint pressure pv (Algorithm 3)
7 update fluid and solid velocities with Fvelocity

Algorithm 2 compute density constraint pressure pd

1 while (iter < minIterations) do
2 compute generalized fluid density ρf

3 compute pd according to LPSPH with h̄max = 0
4 compute generalized pressure force Fdensity

5 update fluid velocities and positions with Fdensity

Algorithm 3 Compute Velocity Constraint Pressure pv

1 create staggered particles
2 track surface particles and set their pressure to zero
3 apply solid wall boundary conditions
4 solve pressure Poisson equation with PCG for pv

At the initialization stage, we apply the same resolution to discretize
both the fluid and solid into a set of carrier particles. Then we use
a common approach termed weak coupling to implement the two-
way coupling, which is shown in Algorithm 1 for an overview. Af-
ter adding the gravitational and generalized viscous forces, we first
predict both the fluid and solid velocities and positions. Then, we
enforce the density constraint on the fluid as shown in Algorithm
2. After that, the solid velocities are updated by the pressure con-
straint force Fdensity . At the moment, the fluid velocity field does
not satisfy the incompressibility condition, we need to compute the
velocity constraint pressure pv (Algorithm 3) with our staggered
meshless method to ensure that the fluid velocity field is divergence
free with required boundary conditions. Finally, we update the ve-
locities of the fluid and the solid in the following step. To handle
scripted rigid bodies (also including static scenes), instead of set-
ting the rigid bodies’ mass to∞, we use a trick to assign ρs = ρ̄f

and compute Ns
i in the same way as Nf

i to achieve the continuity
of physical quantities across solid/fluid boundaries, thus making it
unified in treating scripted and non-scripted rigid bodies.

In Algorithm 2, we implement the iterative-LPSPH method given
by [He et al. 2012]. Here, we only take a fixed iteration number of
3, which is sufficient for us to avoid the particle clumping problem.
Besides, to get rid of the unnatural contraction of surface particles
caused by the particle deficiency, we require the density constrain-
t pressure pd should meet pd ≥ 0. To further avoid the explicit

Staggered Meshless Solid-Fluid Coupling        •        149:7

ACM Transactions on Graphics, Vol. 31, No. 6, Article 149, Publication Date: November 2012



collision detection step between the fluid and solid, the generalized
pressure force Fdensity is computed to prevent the fluid particle
penetration into the solid. When computing pv in Algorithm 3,
the newly created staggered particles are stored in each particle’s
neighbor list. To obtain higher efficiency, both particle Pi and Pj
save a copy of the staggered particle Pi−j in their neighbor lists,
making it straightforward to extend the standard SPH into our stag-
gered SPH. After applying the correct free surface and solid wall
boundary conditions, we use a preconditioned conjugate gradient
algorithm to solve the linear systems since the approximate Lapla-
cian operator is symmetric and positive semi-definite. More details
about the convergence will be discussed in section 7.1.

Figure 9: Fluid running through a tube in 2D with various solid
wall boundary condition including free-slip (top), no-slip (bottom)
and other slip condition (middle).

To implement the free-slip boundary condition, we impose the
boundary condition given by equation 27 and set the value of
µs = 0 to ensure that only the normal part of the relative veloc-
ity is restricted and the tangential part will not be damped down by
the solid. Otherwise, to implement the no-slip boundary condition,
we only need to replace equation 27 with 26 to restrict the relative
velocity between the fluid and solid. However, if we would like to
implement other slip boundary conditions, we need to include the
generalized viscous force by setting the required value of µ to damp
down the tangential part of the relative velocity. Here we simply set
µs = µf and keep the treatment for the normal part the same as
implementing the free-slip boundary condition. Figure 9 gives an
illustration of above three different cases by simulating the fluid
running through a tube.

7 Results and Discussions

All the timings in the following cases are given for a single-threaded
execution on an Intel Xeon W3550 workstation with four 3.07GHz
processors and 6 GB of main memory.

7.1 Convergence Analysis

In this part, the convergence in solving the pressure Poisson equa-
tion 5 is discussed. By invoking the continuity equation, we can
define the degree to which the fluid incompressibility is achieved as
follows

E =
1

N

N∑
i=1

|∆ρi|
ρi

=
1

N

N∑
i=1

|∇ · vi|
∆t

(29)

where the summation is taken over the inner fluid particles only.

We choose a single physical update step at t = 0.1s in the example
shown in Figure 1 (right) and aim to test several iterative strate-
gies for solving pv . The most commonly used algorithm in the
grid-based methods for solving the symmetric positive semidefinite
linear systems is the conjugate gradient (CG) algorithm. However,
the problem with CG is that it requires a large number of iterations
to converge to the desired accuracy (40 iterations for E = 1% and
80 iterations for E = 0.1%, as shown in Figure 10 and Table 1).

Figure 10: Convergence of solving pv for the 3D dam break simu-
lation at t = 0.1 s with different numerical iterative methods.

Table 1: Detailed time statistics for solving pv with different nu-
merical iterative methods.

An improvement to accelerate the convergence rate is to use the
preconditioning techniques, among which the incomplete Cholesky
(IC) preconditioner is one of the most popular preconditioners for
its simplicity and efficiency [Benzi 2002]. As a result, the conver-
gence rate of incomplete Cholesky preconditioned conjugate gradi-
ent (IC PCG) reaches nearly a factor of 3 speed-up over the CG (14
iterations for E = 1% and 28 iterations for E = 0.1%). Neverthe-
less, attention is still needed since both the construction and appli-
cation of the IC preconditioner require extra computational costs.
For E = 1%, it can be found from Table 1 that the enhanced con-
vergence rate of IC PCG over CG fails to compensate for these
extra computational costs, resulting in even longer total computa-
tional time. To explore more efficient preconditioners, we refer to
another commonly used algorithm which is called the symmetric
successive over relaxation (SSOR) method. Although the SSOR al-
gorithm itself does not provide a sufficient amount of convergence
rate, we find that the SSOR preconditioned conjugate gradient (S-
SOR PCG) method shows a quite similar convergence rate as the
IC PCG. Additionally, the SSOR preconditioner, just like the Jaco-
bi preconditioner, can be derived from the coefficient matrix with
little CPU effort. Thus, for both E = 1% and E = 0.1%, the
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SSOR PCG method gives the best performance among all the men-
tioned strategies. In the implementation, the SSOR preconditioner
is parameterized by ω as follow [Barrett 1994]

M (ω) =
1

2− ω

(
1

ω
D + L

)(
1

ω
D
)−1 ( 1

ω
D + L

)T
where D and L represent the diagonal and lower parts of the coef-
ficient matrix, respectively. Besides, ω is set to 1.7 according to a
variety of numerical tests, which gives the best performance.

7.2 Accuracy and Performance Comparison

In order to evaluate the accuracy and efficiency of the proposed
staggered meshless coupling method, we set up a validation test
case using a symmetric wedge impacting on the free water sur-
face. The experiment has been carried out by [Zhao et al. 1996]. At
t = 0s, a wedge with a deadrise angle of 30◦ and weighing 141kg
was dropped and entered the water surface with a 6.15m/s initial
vertical velocity. During the experiment, the vertical motion was
the only degree of freedom allowed to the wedge. For more details,
refer to their original work. The motion speed was experimentally
recorded and plotted in Figure 11.

Figure 11: The falling velocity of a 30◦ deadrise angle wedge,
timed from the moment of entry.

In the numerical setup, a particle spacing of ∆x = 0.01m is se-
lected to discretize both the water, which is 2m wide and 1m deep,
and the wedge, which has a breadth of 0.5m. Then, different sim-
ulations were made to run 0.025s of real time with both the direc-
t forcing coupling method [Becker et al. 2009] and the staggered
coupling method. In the former case, the timestep for the simula-
tion is restricted by the Courant-Friedrichs-Lewy (CFL) condition.
Besides, since the method enforces the non-penetration of the flu-
id particles with the particle−particle collision detection algorithm,
the timestep should be further restricted to ensure that two particles
do not move more than one diameter distance towards each other in
each step. In contrast, the latter method is free of the above men-
tioned limitations due to the use of an implicit incompressible fluid
solver and the avoidance of the explicit particle-to-particle bound-
ary handling, thus allowing significantly larger time steps. The sim-
ulation results for both E = 1% and E = 0.1% are depicted in
Figure 11 to make a comparison with the experimental results, from
which it is found that our method shows a better agreement with the
experimental data. More details about the accuracy and efficiency
are summarized in Table 2 where we have chosen the maximum al-
lowable time step for both the methods. Specifically, it can also be
noted from the table that the deviation from the experimental da-
ta decreases only by a small fraction (approximately 0.2%) as the
compression is changed from 1% to 0.1%. Therefore, it should be
sufficient to only enforce E = 1% to get more efficiency.

Table 2: The accuracy and performance of our staggered meshless
method compared to the direct forcing method [Becker et al. 2009].

7.3 More Effects Demonstration

Figure 12: Fluid flowing around a cylinder with different angular
velocities, 10rad/s (top), 0rad/s (middle), -10rad/s (bottom).

Figure 12 illustrates the one-way coupling with the combination-
s of both the free-slip and no-slip boundary conditions in a two-
dimensional scene demonstrating fluid flowing around a cylinder.
The outer boundary is static with free-slip boundary condition. For
the inner cylinder, the no-slip boundary condition is imposed with
three different angular velocities including 10 rad/s (top), 0 rad/s
(middle) and -10 rad/s (bottom). Another case of dam break in
three dimensions is shown in Figure 1 (right) where the darker pil-
lars are rotating clockwise with an angular velocity of 10 rad/s
while the brighter ones are rotating anticlockwise with -10 rad/s.

Although we have discussed how to avoid the fluid sticking to wall
in section 5.2, in some cases, it is required to model the realistic
cohesion of the liquid to the solids. By imposing the fluid sticking
to the solids, our method is able to model the phenomenon of fluid
flowing around a ball as shown in Figure 13 (right) [Schechter and
Bridson 2012], which is quite difficult for the standard SPH. Be-
sides, a comparison is also shown in Figure 13 (left) where the fluid
sticking to the solids has been avoided.

In Figure 14, the two-way coupling is tested by dropping an ellip-
tical stone into a tank of water with varying initial angular veloci-
ties and different slip conditions. For the non-rotating case, similar
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(a) no sticking (b) sticking

Figure 13: Tap water pouring on a sphere near the outlet. (a)By avoiding fluid sticking to solids, the water leaves the sphere freely. (b)By
imposing fluid sticking to solids, the realistic stream flowing around the sphere is captured.

(a) Ω = 0 rad/s. Left: free slip; Right: no slip (b) Ω = 100 rad/s. Left: free slip; Right: no slip

Figure 14: An elliptical stone dropping into a tank of water with different slip conditions and angular velocities Ω.

Figure 15: Five balls with varying densities (from left to right: 550 kg/m3, 775 kg/m3, 1000 kg/m3, 1225 kg/m3, 1450 kg/m3) plunging
into a tank of water (1000 kg/m3) and correct buoyancy effects are captured.

Examples #P/#P f/#P s E tneighbor[s] tpd [s] tsurface[s] tcreating[s] tassemble [s] tsolving[s] tstep[s]

Fig.1(right) 1891k/1084k/807k 1% 17.2 5.5 1.2 1.9 0.97 4.6 31.6
Fig.12 14.2k/5.4k/19.6k 1% 0.070 0.048 0.008 0.014 0.009 0.035 0.19
Fig.13 86.1k/63.7k/22.4k 1% 0.738 0.202 0.066 0.098 0.052 0.125 1.35
Fig.14 562k/418k/144k 1% 5.3 1.9 0.45 0.67 0.37 3.6 12.7
Fig.15 158k/101k/57k 1% 1.4 0.51 0.20 0.17 0.094 0.44 3.0

Table 3: Timing statistics for the various components of our method. Here tneighbor , tpd , tsurface, tcreating , tassemble and tsolving represent
the required time for finding neighbors, enforcing density constraint, marking fluid surface particles, creating staggered particles, assembling
coefficient matrix and solving pv , respectively. The neighbor list size is set to 30 in the implementation, which also indicates that at most
30 staggered particles will be created for each carrier particle. However, per-particle storage is very small so large numbers of staggered
particles are not a problem for computer memory.
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simulation results were found except for a minor difference in the
sinking velocities. For the free slip case with Ω = 100 rad/s, s-
ince only the normal part of the relative velocity is corrected, the
stone’s angular velocity is only slightly affected. However, in the
no slip case, the stone’s angular velocity is quickly damped down
by the water.

Figure 15 illustrates that the buoyancy effect is properly captured
by using the staggered meshless coupling method. In this example,
five balls with varying densities (from left to right: 550 kg/m3, 775
kg/m3, 1000 kg/m3, 1225 kg/m3, 1450 kg/m3) were plunged
into a tank of water whose reference density is set to 1000 kg/m3.

Finally, the particle numbers and the performance measurements
for each time step are summarized in Table 3. Because the compu-
tational time varies during the simulation, we only report the aver-
aged time for one time step. In all the cases, we use a fixed integra-
tion time step of 0.001s and reconstruct the fluid surface with the
skinning method proposed by [Bhatacharya et al. 2011].

8 Conclusion

In this paper, a staggered meshless method is presented to over-
come the difficulties in simulating the solid-fluid coupling with the
meshless methods. The proposed method creates a set of staggered
particles at each time step to separate the velocity field from the
pressure field. As a result, the free surface and various solid wall
boundary conditions can be applied to different types of the parti-
cles. To avoid the simulation failure, a new framework to enforce
both the density constraint and the velocity constraint on the fluids
is further proposed. In this way, various boundary conditions in-
cluding the free-slip and no-slip can be easily implemented. The
method is novel in that it provides a powerful tool to implement the
stable one-way and two-way coupling between the fluids and rigid
bodies.

However, the method does have some limitations. First, our current
implementation is not yet suitable to deal with the infinitesimally
thin solids, such as the cloth. To enable the fluid interaction with the
thin solids, either very small timestep or robust collision detection
algorithm [Becker et al. 2009] is required. Second, more accurate
contact handling technique among the multi-bodies is needed. In
the current comptuations, we only used the simple penalty forces
between the rigid bodies to avoid penetration. Nonetheless, it would
be an interesting future work to model the accurate behaviors of
both the accurate multi-body contacts and the deformations with
the staggered particles. Furthermore, attentions will also be paid to
achieve the GPU implementations of the method.
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