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Abstract
Enforcing fluid incompressibility is one of the time-consuming aspects in SPH. In this paper, we present a local
Poisson SPH (LPSPH) method to solve incompressibility for particle based fluid simulation. Considering the
pressure Poisson equation, we first convert it into an integral form, and then apply a discretization to convert the
continuous integral equation to a discretized summation over all the particles in the local pressure integration
domain determined by the local geometry. To control the approximation error, we further integrate our local
pressure solver into the predictive-corrective framework to avoid the computational cost of solving a pressure
Poisson equation globally. Our method can effectively eliminate the large density deviations mainly caused by the
solid boundary treatment and free surface topological change, and show advantage of a higher convergence rate
over the predictive-corrective incompressible SPH (PCISPH).
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1. Introduction

Fluid simulation plays an important role in the entertain-
ment and engineering fields, it aims to reproduce the real
flow state based on hydrodynamics and tries to give us a
totally immersive experience. Since Smoothed Particle Hy-
drodynamics (SPH) was first applied to interactive fluid sim-
ulation by [MCG03], many studies [BT07, APKG07, SP09]
have been done on this fully Lagrange meshless method
to get an efficient and realistic simulation result. However,
one main drawback of SPH is its high computational cost
to enforce incompressibility which restricts the simulation
scale to get photo-realistic fluid animations. In the com-
monly used weakly compressible SPH (WCSPH)[Mon94,
BT07], small time steps are required to reduce the den-
sity fluctuation, which increases the overall computation cost
in simulating water. Alternatively, predictive-corrective in-
compressible SPH (PCISPH) [SP09] allows for larger time
steps. However, compared to WCSPH, more computation
cost is required for one simulation step due to the iteration
scheme.

In this paper, we present a new local Poisson SPH
(LPSPH) method to solve incompressibility, which retains
both the high computing efficiency per physical step of
WCSPH and the large time step of truly incompressible
SPH (ISPH). Based on partial differential equation theories
[Eva98], we convert the pressure Poisson equation [CR99]
to a discretized summation over all the particles in the local
pressure integration domain. Then we can simply compute
each particle’s pressure by summation operations. To control
the approximation error, we finally integrate our local pres-
sure solver into the predictive-corrective framework defined
in [SP09] to achieve a strict density error control.

Unlike previous methods of ISPH, our algorithm can
avoid the computational cost of solving a pressure Poisson
equation globally, and effectively eliminate the large den-
sity deviations caused by the solid boundary treatment and
free surface topological change. Compared to WCSPH, we
can get a higher rate of density error decay. After integrat-
ing the predictive-corrective framework, the resulted iter-
ative-LPSPH also shows higher convergence rate over the
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predictive-corrective incompressible SPH (PCISPH). Never-
theless, it is still worth to mention that the neighbourhood
query is a key factor which limits the efficiency of enforcing
the fluid incompressibility [IABT11].

The rest of this paper is composed as follows: Section
2 reviews the related work to our method, Section 3 intro-
duces some basic theories of fluid dynamics and SPH tech-
niques, Section 4 describes the details of our local Poisson
SPH method. Then in Section 5, several examples are pre-
sented to compare our method with WCSPH and PCISPH.
Finally, we draw a conclusion and discuss our future work in
Section 6.

2. Related Work

SPH was originally developed to model the astrosphere inter-
actions in astronautics by the pioneer work [Luc77, GM77].
The early work [DG96] first introduced the SPH method
to graphics community. They proposed proper kernels for
computing forces between particles to simulate deformable
solids. Since then, particle-based methods such as SPH have
become an active topic as the meshless characteristic makes
it very suitable to simulate fast topology-changing phenom-
ena such as fluid motion. [MCG03] first applied the SPH
method to fluid simulation in 2003. They proposed sev-
eral kernels to compute particle densities, pressure forces
and viscous forces. Later, more techniques were proposed
including adaptive fluids [APKG07], fluid-solid interaction
[MSKG05, KAG*05], melting [SSP07] and porous media
[LAD08, LD09].

Recently, research is focused on developing incompress-
ible fluid solver using particle-based method. The fluid in-
compressibility is from the Navier-Stokes equations and need
to be solved to conserve volume. When modelling incom-
pressible flows with SPH, two common strategies have been
used: the weakly compressible SPH (WCSPH) method and
truly incompressible SPH (ISPH). WCSPH models pressure
from a stiff equation of state (EOS) [Mon94, MFZ97] re-
lated to the speed of the acoustic waves. However, to meet
the Courant-Friedrichs-Levy (CFL) condition [CFL67], it
usually requires a very small time step associated with a
speed of the acoustic at least 10 times higher than the maxi-
mum of velocity. Besides, it is always cumbersome to choose
an appropriate parameter of the EOS equation. These two
drawbacks make it infeasible to simulate large-scale fluid
within reasonable time. In contrast to WCSPH, ISPH needs
to solve a pressure poisson equation to project the velocity
field to a divergence-free field. To achieve this, [CR99] first
integrated the velocity field forward without enforcing in-
compressibility, the resulting intermediate velocity field was
then projected onto a divergence-free space by solving a pres-
sure Poisson equation derived from an approximate pressure
projection. [PTB*03] realized incompressibility by Mov-
ing Particles Semi-implicit (MPS) method, which was ca-

pable of solving a variety of incompressible fluids. [LKO05,
HA07, LTKF08] enforced both a divergence-free velocity
field and a targeting of particle number density. However,
the problem of ISPH lies in the complexity to solve the pres-
sure Poisson equation globally, which causes much higher
computational cost in a single simulation step compared to
WCSPH.

Some other efforts have also been made. [SBH09] pro-
posed a novel method to handle point-based incompressibil-
ity. They used Voronoi cells to segment the velocity field and
ensured that each cell is divergence-free. [BZZW09] pre-
sented a revised SPH method to avoid solving pressure Pois-
son equation and achieved more efficient simulation. [SP09]
gave a scheme called predictive-corrective incompressible
SPH(PCISPH). Compared to WCSPH, PCISPH eliminated
the costly procedure of solving the pressure Poisson equation
with an iterative pressure correction algorithm, which can
also enlarge the time step size to achieve better simulation
performances. Moreover, [BLS11] enforced incompressibil-
ity and boundary conditions by using holonomic kinematic
constraints on the density and [RWT11] presented a hy-
brid method that enforced a divergence free velocity on a
coarse grid accompanied by a local density correction of the
particles.

3. Fundamentals of Fluid Dynamics

The governing equations for simulating free surface flow are
the mass and momentum conservation laws. Regarding to the
Lagrangian frame, they are written as:

1

ρ

Dρ

Dt
+ ∇ · v = 0 (1)

Dv
Dt

= − 1

ρ
∇p + 1

ρ
∇ · T + g, (2)

where ρ is the fluid density, v is the fluid velocity, p is
pressure, T is the second-order deviatoric stress tensor, g
represents the gravitational acceleration, and ∇ denotes the
gradient operator (∂/∂x, ∂/∂y, ∂/∂z).

3.1. Solving Incompressibility

The prediction-correction scheme [SL03] is a common
method to solve incompressibility, which is composed of
two steps. In the first step, an explicit Euler forward integra-
tion is applied to get the intermediate particle velocity and
position. At this time, only viscous force and gravitational
force are considered. The intermediate particle velocity and
position are obtained as

v∗ = vt +
(

1

ρ
∇ · T + g

)
�t

x∗ = xt + v∗�t.
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Here vt and xt are the particle velocity and position at t th in-
tegration step, v∗ and x∗ are the intermediate particle velocity
and position, �t is integration time step.

However, incompressibility is not satisfied at the moment.
Thus, a second correction step is required to enforce in-
compressibility. The pressure term plays an important role
in this step to project the intermediate velocity field onto a
divergence-free space. The relevant steps are

�v∗ = − 1

ρ∗ ∇pt+1�t

vt+1 = v∗ + �v∗,

where �v∗ is the velocity increment during correction step,
vt+1 and pt+1 represent particle velocity and pressure at (t +
1)th integration step, ρ∗ represents the intermediate density
computed from the intermediate particle position x∗. Then the
mass conservation equation can be discretized at intermediate
time and result in the following equation

1

ρ0

ρ∗ − ρ0

�t
+ ∇ · v∗ = 0.

Here ρ0 is the reference density. Substitute v∗ = vt+1 − �v∗

and �v∗ into the above equation and assume vt+1 is
divergence-free, the pressure Poisson equation is obtained
as follows

∇ ·
(

1

ρ∗ ∇pt+1

)
= ρ0 − ρ∗

ρ0�t2
. (3)

After solving the pressure Poisson equation, the new velocity
vt+1 and position xt+1 can be easily updated.

3.2. SPH Formulations

SPH is a fully particle-based technique. In the basic SPH,
fluid is represented by a finite number of particles. Each
particle carries physical quantities such as mass, velocity,
etc, and occupies individual space. A physical variable f (x)
can be interpolated by the surrounding particles within the
support domain of the smoothing function W

f (x) =
∑

j

mj

ρj

fjW (x − xj , h), (4)

where mj , ρj and xj are material mass, density and position
of neighbouring particle j , and W is the weighting kernel
with smoothing length h.

Applying this approximation to the forces as defined in
[Mon94, MCG03], the following two symmetric forms are
obtained

Fpressure
i = −

∑
j

mj

pi +pj

2ρj

∇Wij (5)

Fviscosity
i = μ

∑
j

mj

vj − vi

ρj

∇2Wij . (6)

Here μ represents the viscosity coefficient, pi and vi are
the pressure and velocity of particle i, Wij is the smoothing
function of particle i evaluated at particle j written as W (xi −
xj , h).

The most popular density approximation is the summation
approach which well represents the essence of SPH approx-
imation. However, due to the particle deficiency near the
boundary, the density summation approach will smooth out
the density of the concerned particles, leading to spurious re-
sults. A lot of modifications have been proposed to improve
the accuracy of this approach. In our implementation, we use
the technique defined in [RL96] to improve the accuracy near
free surface boundaries and material interfaces.

ρi =

∑
j

mjWij

∑
j

(
mj

ρj

)
Wij

.

To solve incompressibility, WCSPH introduces artificial
compressibility which assumes that every theoretically in-
compressible fluid is actually compressible. [Mon94] applied
the following equation of state to model water’s free surface
flows:

pi = B

((
ρi

ρ0

)γ

− 1

)
, (7)

where γ = 7 is used in most circumstances and B gov-
erns the relative density fluctuation. However, according to
the Courant-Friedrichs-Lewy(CFL) condition, to gain a rela-
tively small density error requires sufficiently small time step
which increases the total computation time tremendously. To
avoid the time step restriction, one can alternatively solve
a global pressure Poisson equation as formulated in Equa-
tion 3. In the projection method [CR99] , the intermediate
velocity field is projected onto a divergence-free space by
solving the pressure Poisson equation. Although larger time
step can be used, solving the elliptic pressure Poisson equa-
tion increases the total work per time step, especially for large
systems. Other methods such as MPS method [PTB*03] and
Hybrid Particle-Mesh Method [LKO05] also need to solve
the global Poisson equation which is time-consuming. How-
ever, our method aims to overcome the above problems and
explicitly solves the pressure with a local Poisson method,
which proves to be accurate and efficient.

4. Local Poisson Solver

We first consider Poisson equation [Eva98]

−�u = f (8)
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in continuous space, here f is a known scalar function and
u is the scalar function to be solved. As we know, except
for some specific f , we can hardly obtain the analytic so-
lution. Fortunately, we can find the fundamental solution of
Laplace’s equation �� = 0 as follows:

�(x) : =

⎧⎪⎪⎨
⎪⎪⎩

− 1

2π
log |x| (n = 2)

1

4π

1

|x| (n = 3).

(9)

Here n means dimensionality. Then we could turn the Poisson
equation from differential form to the following integral form
[Eva98]

u(x) =
∫

Rn

�(x − x′)f (x′)dx ′

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1

2π

∫
R2

log(|x − x′|)f (x′)dx′ (n = 2)

1

4π

∫
R3

f (x′)
|x − x′|dx′ (n = 3).

(10)

The constant coefficient of �(x) is chosen to meet the Poisson
equation.

In the next section, we will discretize Equation 10 to solve
the pressure Poisson equation.

4.1. Pressure Derivation

For the purposes of brevity, we only give pressure derivation
in three dimensional space and list the two dimensional form
directly at the end of this section.

As discussed in Section 3.1, the key to achieve incompress-
ibility of the fluid is to solve the pressure Poisson equation in
Equation 3. A simple transformation can be applied to obtain
the following equation

−�pt+1 = (ρ∗ − ρ0)ρ∗

ρ0�t2
− 1

ρ∗ ∇ρ∗ · ∇pt+1. (11)

As we know, the approximation of the spatial derivative will
be smoothed out in SPH. Besides, the time step �t is small.
Thus, the second term of the right hand side of Equation 11
will be much smaller than the first term. We can then elimi-
nate the second term and get

−�pt+1 = (ρ∗ − ρ0)ρ∗

ρ0�t2
, (12)

which is a standard form of the Poisson equation in Equa-
tion 8, and no unknown variables exist in the right hand side
of Equation 12 anymore. Invoking the Equation 10, we obtain

pt+1(x) = 1

4πρ0�t2

∫
�(x)

(ρ∗(x′) − ρ0) ρ∗(x′)
|x − x′| dx′ (13)

where �(x) represents the ‘local pressure integration do-
main’ for position x as it varies from place to place
in our implementation. More details can be found in
Section 4.3.

In the SPH method, since the entire system is represented
by a finite number of particles, the continuous integral rep-
resentation for equation 13 should be written in the form of
discretized particle approximation as follows

pt+1
i

∼= 1

4πρ0�t2

∑
j

(∫
�i|j

(ρ∗(x′) − ρ0) ρ∗(x′)
|xi − x′| dx′

)
(14)

Here, we use the SPH convection and mark the pressure of
particle i at the position of xi as pt+1

i . �i|j represents the vol-
ume occupied by particle j with a spherical shape centred at
xj in the local pressure integration domain �i , which means⋃

j �i|j ∼= �(xi). From Equation 14, we can find that the
particle pressure is contributed by its neighbouring particles
in the local pressure integration domain.

If we make the simplistic assumption that ρ∗(x ′) is con-
stant throughout �i|j for each particle, Equation 14 can be
converted to

pt+1
i

∼=
∑

j

(
(ρ∗

j − ρ0)ρ∗
j

4πρ0�t2

∫
�i|j

1

|xi − x′|dx′
)

(15)

where ρ∗
j is the intermediate density for particle j.

To calculate the integral in Equation 15, we divide the
domain �i into the following two separated regions

�i|near = {x | |x − xi | ≤ ε } ∩ �i

�i|far = {x | |x − xi | > ε } ∩ �i

where ε is a small value which will be discussed later in this
section. Intuitively, �i|near represents the nearby area of par-
ticle i where the integrand 1/|xi − x′| changes rapidly, �i|far

represents the area where the integrand 1/|xi − x′| changes
relatively slow.

Now we will derive the approximate integral method for
particles in �i|near and �i|far (hereinafter referred to as near
particles and far particles), respectively. For far particles,
the integrand can be approximated by a constant function
sampled at the particle centre xj , thus we can get

pt+1
i|far =

∑
xj ∈�i|far

(ρ∗
j − ρ0)ρ∗

j

4πρ0�t2

∫
�i|j

1

|xi − x′|dx ′

∼=
∑

|xij |>ε

(ρ∗
j − ρ0)ρ∗

j

4πρ0�t2

1

|xi − xj |V
∗
j

=
∑

|xij |>ε

mj

(ρ∗
j − ρ0)

4πρ0�t2|xi − xj |

(16)

where pt+1
i|far is the pressure integral over �i|far, V ∗

j is the
volume of particle j equal to mj/ρ

∗
j and xij is short for
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Figure 1: (a) Local pressure integration domain for particle
i. (b) A reference particle resides at the separating interface.

xi − xj . However, no constant function is adequate for near
particles, thus direct integral method is applied to solve this
problem. Before this, we first move particle j to get a spher-
ical symmetry integral domain about xi , indicating xi = xj

during integration process, then the integral can be done in
spherical coordinates as follows

pt+1
i|near =

∑
xj ∈�i|near

(ρ∗
j − ρ0)ρ∗

j

4πρ0�t2

∫
�i|j

1

|xi − x′|dx′

∼=
∑

|xij |≤ε

(ρ∗
j − ρ0)ρ∗

j

4πρ0�t2

∫
�i|j

1

|xj − x′|dx′

=
∑

|xij |≤ε

(ρ∗
j − ρ0)ρ∗

j r
2
j

2ρ0�t2

(17)

where pt+1
i|near is the pressure integral over �i|near and rj rep-

resents the radius of particle j. Now we can get pressure
by

pt+1
i = pt+1

i|near + pt+1
i|far.

To compute ε, we consider a particle with reference density
ρ0 located in a position shown in Figure 1 (b). For this parti-
cle, it should be equivalent to use either of the approximate
integral method in Equation 16 or 17, that is

1

|xi − xj |V
∗
j =

∫
�i|j

1

|xj − x′|dx′

with the constant part
(ρ∗

j −ρ0)ρ∗
j

4πρ0�t2 eliminated at both sides. By

denoting ε = |xi − xj |, we can easily obtain ε = 2
3 r0, here

r0 represents the radius of the reference particle.

Figure 2: Simulation results of a 2D dam-break case with
different methods. (a) WCSPH. (b) LPSPH with global pres-
sure integration domain. (c) LPSPH with local pressure in-
tegration domain.

Similarly, the two dimensional formulations are listed be-
low without derivation

pt+1
i|near =

∑
|xij |≤ε

(2 log(rj ) − 1)(ρ∗
j − ρ0)ρ∗

j r
2
j

2ρ0�t2

pt+1
i|far =

∑
|xij |>ε

mj

(ρ∗
j − ρ0)ρ∗

j log |xj − xi |
ρ0�t2

4.2. Local Pressure Integration Domain

As indicated by Equation 10, we can simply define the pres-
sure integration domain �i as the whole problem domain,
and we define it as global. Otherwise, it will be local. How-
ever, there are two main reasons for us not applying the
global strategy: First, the fluid state changes all the time dur-
ing the dynamic fluid simulation, the particles in separated
areas should have no effects on each other. Secondly, if we
do not use any other accelerating algorithm such as the fast
multipole method [Gre88], a computational complexity of
O(N 2) is needed to compute the pressure for all particles. It
is usually a disaster if we want to get a realistic fluid anima-
tion. To address these two problems and meet the core idea
of SPH, we adopt to use a geometric local domain (red circle
in Figure 1(a)) to solve the Poisson problem and define �i

as follows

�i = {x| |x − xi | ≤ �i , �i = min
y∈S

|y − xi |}

where S represents the fluid boundary, �i measures the short-
est distance from particle i toS which can be effectively com-
puted using the redistancing method defined in [APKG07].
From the definition, we find �i decreases as the particle ap-
proaches fluid boundary, thus less computational effort is
needed for computing particle pressure near the boundary
than in the interior. With this strategy, Figure 2 gives the
simulation results of a testing 2D dam-break case. We can
find our local method (Figure 2c) makes the fluid shape
well agree with the WCSPH result(Figure 2a) while large

c© 2012 The Authors
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deviations can be found in Figure 2(b) where we use the
whole problem domain for pressure computing.

However, in large-scale fluid simulation, the particle num-
ber in �i could be still very large for interior particles. We
thus bring in a const �max ∈ [0,∞) to balance the accuracy
and efficiency

�i = min(�i , �max)

Here two special cases should be noted: As ∞ is the
supremum of sup{�i} for all simulations, here we refer to
�max = ∞ as the simulation case with �i unrestricted. In
the case of �max = 0, for pi , we only need to compute the
pressure contribution by the particle itself, thus the pressure
solver in Equation 17 can be reduced to the following simple
form in three dimension

pi = (ρ∗
i − ρ0)ρ∗

i r
2
i

2ρ0�t2
(n = 3)

which has a great similarity with the EOS in the form of
Equation 7. Besides, the two dimensional form for �max = 0
is as follows

pi = (2 log(ri) − 1)(ρ∗
i − ρ0)ρ∗

i r
2
i

2ρ0�t2
(n = 2)

If we designate ρ∗
erri

= ρ∗
i − ρ0 and take a further compar-

ison with the pressure form given by PCISPH, we can find
that our pressure form is quadratic about ρ∗

erri
while the form

given by PCISPH is linear.

4.3. Prediction-Correction Framework

Although our LPSPH method shows a higher density error
decay rate over WCSPH as discussed in Section 5.1, we have
to control the density error under a user-defined threshold η

strictly. To achieve this goal, we integrate our method into
the prediction-correction framework defined in [SP09] and
call it iterative-LPSPH. The modified pseudocode is shown
in Algorithm i-LPSPH.

As we can see in the pseudocode, the particle velocities
and positions are temporarily forwarded (line 7∼8) with-
out considering pressure forces. The resulting intermediate
densities (line 14) are then used to estimate the required
pressure with our local Poisson method (line 15) to update
the intermediate velocities and positions (line 18∼19) until
the particle density fluctuation is smaller than the predefined
threshold η (line 21). Here Ni(t) represents the neighbour-
ing particles in the support domain and ℵi(t) represents the
particles in the local pressure integral domain �i for each
particle i. Compared to WCSPH, our method usually needs
to compute extra pressure neighborhoods ℵi(t) except for a
particular �max, which will be further discussed in Section
5. However, in our real implementation we only recompute
pressure radius �i (line 3) every 20 steps if necessary and no

significant visual differences can be found. From the pseu-
docode, we note that the non-iterative LPSPH is just a special
case of iterative-LPSPH with η sufficiently large. It also in-
dicates that the shift between the non-iterative LPSPH and
iterative-LPSPH is easy.

Algorithm i-LPSPH

1 while animating do
2 for each particle i
3 compute �i as in 4.3
4 find neighbors Ni (t)
5 compute forces Fν,g

i (t)
6 for each particle i
7 predict velocity v∗

i = vi (t) + �t ∗ Fν,g
i (t)/mi

8 predict position x∗
i = xi (t) + �t ∗ v∗

i

9 do
10 for each particle i
11 find neighbors Ni (t)
12 find pressure neighborhoods ℵi (t)
13 for each particle i
14 predict density ρ∗

i

15 compute pi as in 4.2
16 compute pressure force Fp

i (t)
18 update velocity v∗

i + = �t ∗ Fp
i (t)/mi

19 update position x∗
i + = �t2 ∗ Fp

i (t)/mi

20 compute density variation ρ∗
err

21 while (ρ∗
err > η)

22 for each particle i
23 update velocity vi (t + 1) = v∗

i

24 update position xi (t + 1) = x∗
i

5. Results and discussion

To assess the accuracy and efficiency of the LPSPH method,
testing cases including both 2D and 3D have been imple-
mented on a PC with an Intel Dual-Core 2.8 GHz CPU and
3GB RAM. In all animations, the surface of the fluid is de-
fined with the approach presented in [APKG07] and rendered
using POV-Ray (http://www.povray.org) after extracting the
fluid surface using a marching cubes algorithm [LC87].

5.1. Density Error Analysis

We first set up a 2D dam break case with 4639 particles
to compare the density errors of both the commonly used
WCSPH and our new LPSPH method with � unrestricted.
As we have found in WCSPH, after temporally integrating
the fluid forward, large density variations could be caused by
two major reasons: solid wall boundary treatment and free
surface topological change. The former usually causes fluid
to be compressed, and the resulted error will then spread
out radially as depicted in Figure 3(a) and decay as time

c© 2012 The Authors
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Figure 3: Comparison of density error pattern caused by
boundary treatment (up) and topological change (down).

evolves. The spread speed and decay rates are closely related
to the smooth radius h, the time step size �t and the stiffness
parameter k of EOS equation. It’s always a cumbersome
work to choose the appropriate parameter value for the EOS
equation. However our method effectively overcomes this
difficulty and shows higher density error decay rates.

Here we choose a relatively large time step size �t =
5 × 10−4s and set the reference density ρ0 = 1000 kg/m3.
As we can see in Figure 3(b), the interior density errors
have been greatly eliminated at t = 0.1s while we can still
find obvious over estimated density errors in the interior part
of Figure 3(a). On the other hand, under estimated density
errors usually occur when fluid topology changes as depicted
in Figure 3(c) where a small drop of water splashes into a
larger body of water. A similar scene can also be noted in
Figure 3(d) with LPSPH method in which we do not find any
significant errors. We refer the readers to the accompanying
video to assess the differences in dynamic simulations.

As the choice of �max can significantly affect the results,
more detailed numerical analysis is needed. Along with the
WCSPH method, we run different simulations of LPSPH
with varying �max and plot the density errors over time in
Figure 4 . The results for �max = 0, �max = h, �max = 2h and
�max = 3h show a overall decreasing density error at the cost
of increasing computing expenses as shown in Table 1. The
case with � unrestricted corresponding to �max = ∞ pro-

Figure 4: Comparison of density errors over time between
our local Poisson solver with different maximum pressure
radius and EOS-based solver.

Table 1: Statistics of different simulations. Notice how the mean
value decreases and computation time increases as �max increases.
Also notice the differences between the simulations with and without
redistancing when �max = h

Method Mean Std. Redistance tsim[min]

WCSPH 23.28 8.34 − 6.36
�max = 0 8.96 2.80 − 8.26
�max = h 7.44 2.32 − 10.96
�max = h 6.84 1.85

√
12.44

�max = 2h 5.63 1.62
√

15.29
�max = 3h 4.57 1.19

√
19.32

�max = ∞ 4.58 1.03
√

29.64

vides the best result of accuracy and stability as the mean
and standard deviation of the density error indicate, but re-
quires the most expensive computational cost. Thus, balance
between accuracy and efficiency is needed. In this 2D case,
since no more significant accuracy could be further obtained
when �max exceeds 3h, we suggest to choose �max ∈ [0, 3h]
according to the different requirement. In addition, when
we set �max = h, both the simulations with and without re-
distancing are executed. Although minor advantage can be
noted in Table 1 with redistancing, we can always improve
efficiency by avoiding redistancing.

5.2. Convergence Analysis

In this section, we integrate our pressure solver into the
predictive-corrective framework and perform a convergence
analysis for the 3D water drop case, the predefined maximally
allowed density fluctuation with respect to the reference den-
sity is η = 1%.

c© 2012 The Authors
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Figure 5: Comparison of iteration numbers over time be-
tween PCISPH and iterative-LPSPH.

For efficiency, we here set �max = 0 to make each iteration
as simple as possible. Thus, no extra effort is needed to do
redistancing and search neighboring particles. According to
[SP09], a minimum of three iterations is required to achieve
a low level of pressure fluctuations. However, in our imple-
mentation, we don’t apply this strategy for both PCISPH and
our LPSPH method. The iteration number is plotted over
time in Figure 5. It can be seen that the iteration number
of LPSPH is approximately halved compared to PCISPH.
After 4s of simulation, the former gets an average iteration
of 1.47 while the later 2.53. As we know, at least 1 iteration
is required, thus we only take 0.47 extra iteration per physics
step by using our method in this example, which is less than
a third of that needed for PCISPH. Figure 6 shows several
examples (33k, 74k and 113k) of the convergence within
a single physics update step where we can also find faster
convergence rates with our method.

5.3. Performance Comparison and Visual Results

In this section, both the previously described 2D and 3D
simulations are used for a comparison between WCSPH,
PCISPH and our iterative-LPSPH method.

Figure 6: Several convergence examples with different res-
olutions at t = 0. Notice how fast the density error reaches
the predefined threshold η = 1% with both methods.

In WCSPH case, the time step is limited by CFL condition,
the viscous diffusion term and the force terms [Mon92]:

�t = min

(
0.25 min

i

(
h

|fi |
)

, 0.4

(
h

cs(1 + 0.6α)

))

with fi denoting external forces, α denoting the viscous con-
stant 0.5 according to [BT07] and cs denoting the speed of
sound in the fluid. To meet the maximally allowed density
error η = 1% from reference density, an available method to
compute the pressure constant B is given according to the
following equation [BT07]:

B = ρ0c
2
s

γ
, cs =

√
2gH

η
,

where H represents the height of the scene. We strongly
refer the reader to the original paper to get more details.
However, more tests are usually needed to adjust B to get the
appropriate value.

In our implementation for PCISPH, we use a precom-
puted single scaling factor δ which is evaluated for a proto-
type particle with a filled neighbourhood. The performance

Table 2: Comparison between WCSPH, PCISPH and LPSPH.

Case Method #p B �t[s] �t ratio tsim[min] Avg Iterations Speed-up

2D Dam-Break WCSPH 4639 1.81 × 105 2.92 × 10−5 – 101.50 – –
2D Dam-Break PCISPH 4639 – 1.00 × 10−3 34.25 9.77 3.35 10.39
2D Dam-Break i-LPSPH 4639 – 1.00 × 10−3 34.25 6.19 1.70 16.38
3D Water Drop WCSPH 113k 2.22 × 105 1.95 × 10−5 – 6191.83 – –
3D Water Drop PCISPH 113k – 1.00 × 10−3 51.28 369.18 2.53 16.78
3D Water Drop i-LPSPH 113k – 1.00 × 10−3 51.28 272.05 1.47 22.76
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Figure 7: The similarity of visual results simulated by both WCSPH (top panel), PCISPH (middle panel) and LPSPH (bottom
panel) with 113k particles.

Figure 8: An animation of a water drop splashing into a larger body of water.

Figure 9: A double dam break with 86k particles.

c© 2012 The Authors
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measurements and simulation data for the 2D and 3D cases
are summarised in Table 2. The physical behaviour and vi-
sual results are compared in Figure 7 with the 3D case of
113k particles where we can see full agreement of the three
methods with only very minor detail differences. Besides,
more examples with varying particle resolutions are exe-
cuted. Figure 8 shows a double dam break with 86k particles
which throws up a thin sheet of water that runs diagonally
across the tank. Figure 9 presents an animation of a water
drop that splashes into a larger body of water, causing a re-
alistic water crown and small bouncing droplets. The total
particle number is 188k here. In all examples, a η of 1%
is enforced to eliminate compression artifacts and enhance
visual effects.

6. Conclusion and Future Work

We present a local Poisson SPH Method to solve viscous
incompressible fluid and preserve both the high computing
efficiency per physical step of WCSPH and the large time
step of ISPH. Unlike previous pressure solvers, we solve the
pressure Poisson equation with a new integral method. First,
the differential pressure Poisson equation is converted into
an integral form. Secondly, a discretization technology is
used to convert the continuous integral form to a discretized
summation over all the particles in the local pressure integra-
tion domain. Finally, we integrate our pressure solver method
into the predictive-corrective framework, achieving a flexi-
ble density error control. Experiments show the advantages
of LPSPH both in density errors and convergence rates.

As our method is related to local geometry, we will pay
attentions to adaptive sampling as for example, proposed in
[APKG07] to break through the �max limitation, thus main-
tain a relatively constant number of particles in the local
pressure integration domain, and it will be a great perfor-
mance improvement.
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