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Meshless simulation of brittle fracture
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ABSTRACT

We propose a meshless method to simulate brittle fracture. For brittle solids, stress computation can be difficult because

brittle materials generally require small timesteps which bring about heavy computational burden. Furthermore, treating

the brittle objects as deformable bodies will cause inevitable visual artifact. We treat the brittle objects as fully rigid bodies

and solve the brittle stress distribution with Meshless Local Petrov-Galerkin as a quasistatic problem, so visual artifact

disppears and no timestep restriction exists. As a meshless framework, our method has the advantage of easy-resampling

around high stress areas to improve computation accuracy. To generate fractured pieces, unlike previous methods which

explicitly track the crack propagation, we also present a novel damage based model. Our model supports user-control of the

fracture pattern which is especially useful when simulating anisotropic materials such as glass or wood. Results show that

our meshless framework is physically feasible and user controllable. Copyright # 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fracture is a natural phenomena which plays an important

role in animated films, virtual reality and video games, it is

almost an indispensable element in realistic virtual scenes

with impressive visual effects. These visual ‘eye-candys’

were traditionally designed and synthesised by experi-

enced artists, but recently, fracture simulation based on

computational fracture mechanics [1] achieves great

success in generating more realistic results with minimal

manual work. Classic finite element method (FEM) is used

intensively in physically based deformation and fracturing.

However, the accuracy of FEM computation calls for

maintaining a high quality mesh which is sometimes

costly and difficult. Recent years, meshless methods

were developed with the objective of eliminating part

of the difficulties and have been applied to graphics

successfully such as Refs. [2,3].

For brittle fracture simulation, the stress distribution is

required to determine which part of the object is going to

break. However, computing the brittle stress distribution

proves to be difficult. Treating the brittle solids as

deformable bodies with explicit methods will result in

large Young’s modulus and tiny timesteps which increases

computational burden. Worse still, visual artifact appears

because the tiny deformation will sometimes be noticeable

[4,5]. In FEM methods, techniques were developed to

treat brittle objects as rigid objects and compute brittle

stress through quasistatic analysis [4–6]. Unfortunately, no

previous work of brittle fracture has been proposed for a

meshless framework. One representative framework [2]

computed stress based on the gradient of displacement field

and achieved good results for deformable fracture, but their

explicit method was still not suitable to handle brittle

stress computation. To fill in this gap, we introduce the

Meshless Local Petrov-Galerkin(MLPG) method coupled

with rigid dynamics to solve the brittle fracture problem.

Controllability is another requirement in computer

graphics when simulating fracture. Tuning physical

parameters to get satisfactory results is time consuming

and needs skills, which is not very friendly to end users

such as artists. Unlike previous methods which explicitly

track the crack propagation, we propose a novel damage

based model to generate crack and fragments, which is

very convenient to take control of the fracture pattern.

Overall, our contributions are:

� We novelly introduce MLPG into brittle stress analysis

by solving a quasistatic problem. To ensure compu-

tational accuracy near high stress areas, we presented
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an iterative resampling technique, which is more con-

venient than remeshing in FEM.

� We propose a simple but effective damage-based

fracture model. Our method generates the fragments

based on a two-state damage variable, and has

good control over the fracture pattern when simulating

anisotropic fracture.

� We implement a meshless framework to handle brittle

fracture with physical accuracy as well as controllability.

2. RELATED WORK

Our work is closely related to meshless methods and

fracture simulation in computer graphics.

2.1. Meshless Methods

Meshless methods such as smooth particle hydrodynamics

is quite popular in fluid simulation [7], fluid–solid

interaction [8] and granular material simulation [9]. The

nature of meshless methods make them good choices for

simulating frequently topology-changing objects such as

fluid. In recent years, researchers also tried to simulate

solid with meshless methods. Reference [10] modeled soft

inelastic material using particle systems. Reference [11]

introduced smooth particle hydrodynamics (SPH) method

to model deformable solids. By extending fluid with

viscoelasticity and viscoplasticity, toothpaste-like solid

can be simulated [12]. More realistic animation were

achieved using computational mechanics [13,14]. Refer-

ence [14] used a moving least square method to compute

deformation gradient. Their method was capable of

simulating a wide range of elastically and plastically

deformable objects, however, the method only worked well

if each particle had at least three neighbours at non-

degenerate locations. Reference [15] coupled meshless

finite element formulation and keyframe targeting, motion

control of the simulated deformable objects was achieved

at interactive rates. Reference [16] replaced Ref. [14]’s

MLS method with SPH, which has the advantage of

handling coarsely sampled or even coplanar particle

configuration. However, their formation was not rotation-

ally invariant, which led to erroneous rotation. Reference

[17] solved the incorrect rotation problem in Ref. [16] from

a co-rotational point of view. Reference [18] introduced a

interactive technique called shape matching which was

later improved by Ref. [19,20]. More recently, Ref. [3]

developed an accurate unified treatment of elastica. They

derived a new quadrature rule for volumetric deformation

fields which offered unified treatment when simulating

spanning rods, shells and solids.

2.2. Fracture Simulation

The early work on cutting and fracturing of deformable

objects dates back to Ref. [21]. Reference [22] presented a

finite element model for brittle solids simulation. By

analysing the stress tensors, they computed how crack

initiates and propagates. Reference [4] proposed a stiff

material fracture framework, they only computed the

effects of impact forces at discrete collision events using

finite element technique, real-time simulation was

achieved. Reference [23] extended their previous work

on brittle fracture to simulate ductile fracture, plastic

deformation was modeled by updating the plastic strain.

Geometric methods for cutting and splitting are also used

in fracture simulation [24]. Built upon the work of

meshless animation of elastic and plastic deformable solid

[14,2] presented a new meshless framework for elastic and

plastic materials that fracture. They dynamically sampled

the volume and explicitly advanced the crack front to

generate new fracture surface. Extending method [4,5]

treated the material as fully rigid bodies in the limit of

infinite stiffness, so that the computation will not suffer

from the small timesteps. Their framework was also based

on finite element analysis. Reference [16] presented a

unified particle model for both fluid and solid. In their

framework, a simple fracture strategy was proposed by

checking the distances between neighbouring particles.

Based on a co-rotational tetrahedral FEM, Ref. [25]

described their system featuring fast deformation and

fracture simulation in a real-time gaming context.

Reference [26] simulated thin shell using low-resolution

simulation meshes, which showed a novel combination of

texture concepts and physical simulation. Targeting on

sound synthesis, Ref. [6] used a fast quasistatic stress

solver to resolve near-audio-rate fracture events.

3. OVERVIEW

Figure 1 shows the pipeline of our meshless simulation

framework. In each timestep, objects move according to

rigid body dynamics. When collision happens, collision

response, such as a penalty force is loaded into our MLPG

solver for stress computation (section). Meanwhile,

adaptive sampling is applied to achieve better accuracy

in high stress areas (section). The resampling and stress

computation are called iteratively for several times to

improve accuracy. After that we solve the problem of

fragmentation if necessary (section). Then rigid movement

Figure 1. Overview of our simulation pipeline.
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is integrated into next timestep. We show the implementa-

tion details and results in section.

4. MESHLESS BRITTLE FRACTURE

In computational mechanics, meshless methods receive a

lot of attention due to its potential in eliminating the costly

effort of mesh generation, which is a common operation

in finite element analysis. Among different meshless

methods, the MLPG approach, first presented by Ref. [27]

can be considered as a general framework for the

other meshless methods. One can choose any meshfree

approximations and any convenient test function for the

solution [13]. MLPG is also called true meshless method

without background grid for integration [27]. We choose a

variation of MLPG called MLPG 5 [28] in which only

boundary integration is needed for each local sub domain.

4.1. Quasistatic MLPG Formation

Explicitly simulating rigid fracture [2] required large

Young’s modulus and small timesteps which make the

system very stiff, worse still, there can be inevitably visual

artifact under the tiny deformation [4]. So with brittle

fracture, we treat the object as undeformable rigid, and we

use a quasistatic solver to compute the stress distribution.

The basic idea of quasistatic analysis is to approximate

the stress distribution by solving the static equilibrium

problem when collision happens. In this way no timestep

restrictions is needed, thus we can simulate brittle object

with infinite stiffness. The technique has been applied to

FEM methods [4–6], but has not been presented in a

meshless framework. The quasistatic formation:

Ku ¼ fext (1)

The displacement field u2R3N results from the external

force fext2R3N . K3N�3N is a matrix where N is the number

of simulated nodes. The whole equation reveals the idea of

the technique: in order to stay equilibrium with external

force fext, displacement field u is needed to generate

enough elastic force for canceling out the effect of fext.
As we only use the displacement field u for stress

computation, but never for updating the particle positions,

the brittle objects appear to be fully rigid without visual

‘deformed’ artifact.

After the displacement field u is solved, we then

compute the stress field. As sheer rigid rotations do not

generate deformation, calculating stress from displacement

field with rigid transform involved will cause visual

artifacts. This has been considered in finite element based

methods [29,5,6] as well as meshless methods [17].

We solve the problem with the co-rotation technique used

in Ref. [29,17]. We extract the rotation part R of the

transform x0 ! x0 þ u using polar decomposition, then

rotate u with R�1 into the un-deformed frame to calculate

stress, and finally rotate the stress back to current frame by

R. In this way, the rigid rotation effect is canceled out.

The equilibrium equations in a volume V bounded by

surface G, are given by

sij;j þ bi ¼ 0 in V (2)

where sij is the stress tensor and bi is body force. Boundary
condition is presented by

ui ¼ ui on Gu (3)

sijnj ¼ t on Gt (4)

where ui are the prescribed displacements, ti are

the prescribed surface tractions, nj is the outward normal

of the boundary. Equations (3) and (4) are geometry and

force boundary condition, respectively. MLPG constructs

the weak form of the Equation (2) over local sub domains

Vs, which is a small region around each node inside the

whole domain. These local sub domains cover the whole

domain V and can be of any size or shape. In our

implementation, we choose cubes due to their simplicity.

The local weak form of Equation (2) for node I is:Z
VI

s

ðsij;j þ biÞnidVs�a
Z
GI
su

ðui�uiÞnidG ¼ 0 (5)

where ni is the test function and a is a penalty parameter

to enforce geometry boundary. Later we will show

discretisation of this continuous formation.

4.2. MLS-Based Displacement Field

In MLPG 5, the trial function is constructed using moving

least square approximation. The displacement field u is

approximated by polynomial aTpðxÞ with pðx; y; zÞ ¼
ð1; x; y; zÞT for linear basis, or pðx; y; zÞ ¼
ð1; x; y; z; x2; y2; z2; xy; yz; zxÞT for quadratic basis. The

coefficients a¼ a(x) can be solved by minimising error

term J(a)

JðaÞ ¼
Xn
i¼1

vðkx�xikÞkaTpðxiÞ�uik2 (6)

where the weight kernel vðdÞ can be defined as a 4th

order spline

wðdÞ ¼ 1�6 d
rI

� �2

þ 8 d
rI

� �3

�3 d
rI

� �4

0 � d � rI

0 d > rI

(
(7)

rI represent the limited support of node I. By setting

@J=@a ¼ 0 yields

uðxÞ ¼
Xn
i¼1

fiðxÞui (8)

with shape function

fiðxÞ ¼ pðxÞTM�1ðxÞpðxiÞvðkx�xikÞ (9)
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and motion matrix

MðxÞ ¼
Xn
i¼1

vðkx�xikÞpðxiÞpðxiÞT (10)

This MLS approximation has one shortcoming,

sufficient number of neighbouring nodes are needed to

guarantee thatM(x) is invertible. Similar problems exist in

previous work [14,2,16] when the simulated nodes come to

coplanar or colinear configuration. To handle this issue,

we use the generalised moving least square [13]. Compared

to traditional MLS, an additional error term D is added to

J(a) in Equation (6):

D ¼
Xn
i¼1

X3
j¼1

vðx�xiÞkaTp;jðxiÞ�ui;jk2 (11)

p,j represents the derivative of pwith respect to component

xj. Minimising the new J(a) leads to a invertible motion

matrix

MðxÞ ¼Pn
i¼1

vðkx�xikÞðpðxiÞpðxiÞT

þP3
j¼1

p;jðxiÞp;jðxiÞTÞ
(12)

Compared with the meshless fracture work [2], our

method can handle colinear and coplanar configuration,

which is critical when simulating small features such as rod

or thin sheet.

4.3. Numerical Discretisation

According to Ref. [28], discretising Equation (5) leads to

the following equation

XN
J¼1

KIJuJ ¼ fI (13)

For node I which lie inside the boundary:

KIJ ¼ �
Z
@VI

s

NDBJdG; fI ¼
Z
VI

s

bdV (14)

For node I on geometry boundary:

KIJ ¼ fJdIJI3�3; fI ¼ u (15)

For node I on force boundary:

KIJ ¼ NDBJ; fI¼ t (16)

where

N ¼
n1 0 0 n2 0 n3
0 n2 0 n1 n3 0

0 0 n3 0 n2 n1

0
@

1
A

and (n1, n2, n3) is the outward normal on the boundary of

local sub-domain.

BJ ¼

fJ
;x 0 0

0 fJ
;y 0

0 0 fJ
;z

fJ
;y fJ

;x 0

0 fJ
;z fJ

;y

fJ
;z 0 fJ

;x

0
BBBBBBB@

1
CCCCCCCA

BJ is composed of the derivatives of shape function fJ
k

with respect to the k-component of x.

D ¼ D0

1 n
1�n

n
1�n 0 0 0

n
1�n 1 n

1�n 0 0 0
n

1�n
n

1�n 1 0 0 0

0 0 0 1�2n
2ð1�nÞ 0 0

0 0 0 0 1�2n
2ð1�nÞ 0

0 0 0 0 0 1�2n
2ð1�nÞ

0
BBBBBBB@

1
CCCCCCCA

with D0 ¼ ½Eð1�nÞ�=½ð1þ nÞð1�2nÞ�. E and n are the

Young’s modulus and Poissons ratio, respectively. As we

choose simply cube as the sub domain, the boundary

integration for KIJ can be easily computed by Gaussian

integration. The matrix generated by MLPG is sparse un-

symmetric, we use Taucs to solve the system.

As we solve the displacement field for all the particles

through the static solver, no tiny timesteps are needed

to ensure brittleness, computation cost will drop when

compared to the previous work on meshless fracture [2].

5. ITERATIVE RESAMPLING

In FEMs, to guarantee accuracy of the computation

around high stress area, frequent remeshing is needed.

Changing the resolution may be a non-trivial operation for

FEM-based methods, but is quite simple and efficient in

our meshless framework. We propose an iterative strategy

to handle dynamic resampling to gain better accuracy in

high stress areas.

Under the initial sampling configuration, we compute

the stress when collision happens as in section 0. Then

we resample the computational domain with higher stress

through a simple octree-based strategy. In Figure 2, we

show the successive particle distribution when collision

happens. It is relevant that area A and B are more strain-

intensive than area C, which is more likely to break. Our

resampling operation also brings additional advantage

when handling fracture surface, when constructing fracture

surface with 3D triangulation, resampled particles generate

more smooth crack surfaces.

The resampling method we presented is different with

Ref. [2]. In their paper, the object is adaptively sampled

according to the geometric feature. The boundary parts of

the object is densely sampled while the inside parts is

sparsely sampled. Our resampling method comes from

another point of view, in which more particles are planted

in stress intensive area. As fracture happens where stress is
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intensive, geometric complex parts of an object does not

necessarily break. Our method puts more computational

effort on high stress areas where fracture might happen,

and reduces the number of particles in low stress area, thus

decrease the cost of computation.

6. FRAGMENT GENERATION

According to Ref. [1], crack propagation is triggered when

the maximal eigenvalue of stress tensor s exceeds the

material threshold. The cracks grow and finally fracture the

object into fragments.

6.1. Damage-Based Fracture Model

Unlike previous work such as Ref. [22,2], we do not

explicitly track the crack surface to generate new

fragments. We solve the fragmentation problem from a

damage-based point of view. Damage mechanics has gain

success in engineering fields for modeling fracture [30].

The key idea is to introduce a variable D (0 � D � 1) to

describe the damage status of the material, for example, the

stress s for an isotropic material under tension will reduce

to ð1�DÞs. When material threshold is exceeded,D begins

to accumulate at a constant speed Cd

D ¼ Dþ Cdðt�t0Þ ð0 � D � 1Þ (17)

we derive our method from the damage concept by adding

Di to each particle i to represent the damage already

happened to its volume. With regard to rigid fracture, the

evolution of Di is completed for an instant, so we set Cd to

be infinite large (Cd !1). Then the damage Di can be

reduced to a two state variable (whether or not totally

damaged), this damage variable only changes from

undamaged (Di 6¼ 1) to damaged (Di¼ 1) under stress

which is beyond threshold.

The damaged particles no longer contribute any stress

to neighbouring particles, thus separate the object into

different parts. Our algorithm can be summarise into three

step:

(1) Compute the maximal eigenvalue of stress tensor to

compare with the material’s threshold. Then each

particle i is assigned as damaged or undamaged

depending on whether its threshold is exceeded.

(2) Find groups of connected undamaged particles, each of

which form a new fragment.

(3) Cluster the damaged particles into fragments.

We ran depth first search in step 2 with neighbouring

table stored during initialisation to find connected part

of the object. The disconnected damaged particles are

clustered to be small debris or large fragment according

to the cluster strategy (next section).

6.2. Cluster Strategy

As the micro flaws inside the object which define the

thresholds are hard to model [30], it is difficult to simulate

desired fracture pattern by tuning physical parameters.

However, in computer graphics, controllability over

number/shape of fragments is often desirable especially

for the artists. One option is to control the fracture process

Figure 2. Stress is calculated when the plane model hits the ground. In stress intensive areas, we resample the particles to guarantee

accuracy.
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by pre-setting the stress threshold values. Setting lower

stress threshold in user interested area will lead fracture

there. This strategy is simple to implement and sometimes

can be sufficient for the fracture pattern design. However,

for some scenario such as anisotropic fracture pattern such

as wood or glass, setting thresholds will be a tedious work

to achieve satisfactory results. We propose a vector-field

guided cluster method to enforce controllability.

Our method can be divided into two steps of seeding and

clustering. We first seed the damaged particles with desired

number of fragments then cluster all damaged particles to

the seeds. The seeding process can be operated as: add first

seed randomly, then add seeds in a greedy way, such that

the minimum distance between current seed and the

already added seeds is maximised. We also apply the

strategy that higher stress areas is covered with more seeds,

this will generate more debris for areas such as contact

point which is reasonable. This strategy can be used to

generate many tiny debris which is common in real world

fracture. We propose a penalty distance to seeding and

clustering process to guide the fracture with a user defined

vector field. With PA and PB the position vectors, the

penalty distance dðA;BÞ guided by a normalised vector

field v is defined by

dðA;BÞ ¼ kPAPB
 ����ð1�lÞðPAPB

 ��� � vÞvk (18)

where the penalty factor l (0 � l � 1) suppresses

the distance components perpendicular to the given vector

field v, enforcing the fragments to be generated along v.
This is shown in Figure 3. With this simple technique, we

are able to model anisotropic fragmentation such as glass

or wood fracture (Figures 8 and 9).

With complex shaped models (e.g. plane model), we

use distances along neighbouring particles to ensure

connectivity. For distances between particles, we find

the shortest distance using the neighbouring information

we have stored in the neighbouring table. Computing the

shortest path can add cost, but guarantees particles from

the same rigid fragment stick together. For rendering

detailed triangular surfaces, we just need to cluster the

surface triangles based on the already clustered particles.

7. IMPLEMENTATION AND
RESULTS

Particles in our implementation are arranged into a spatial

hash grid [7] to accelerate neighbour finding. At the

beginning of each time step, we insert the particles into the

spatial grid for later use. We also implemented a neighbour

table to further accelerate the neighbour finding process.

Collision detection is handled between particles. We use

penalty forces as the collision response. We assign an id to

each particle to indicate to which fragment it belongs, then

for rigid bodies, collision only happens between particles

with different ids.

For integrating Kij, we use cubes as the sub domains,

and 4-point Gaussian integration on the cube boundary is

calculated with accuracy, which is the dominant cost of

the stress computation process (we use as many as

4� 4� 6¼ 96 Gaussian integration points on each cube).

If efficiency is the main concern, reducing the Gaussian

points will help, with the loss of some accuracy.

For rendering, the point-based technique is suitable to

our methods [2,31]. However, to take advantage of off-the-

shelf high quality ray-tracing tools, we embed a detailed

triangle mesh into the particles and the triangles move with

the particles with the same rigid body parameters. When

the object is fragmented into parts, we generate the fracture

surface through a constrained triangulation procedure

using the original surface triangles and simulation particles

near the crack surfaces. All images in our experiments

are rendered using POVRAY(www.povray.org) Figures 4

and 5

Figure 4 shows the dropping test of a coffee cup. When

the cup hits the ground, stress computation is triggered,

then fragmentation procedure is called to generate new

fragments. The whole computation is based on the particle

model in Figure 4. Figures 5 and Figure 6 show additional

Figure 3. Taking the simplest 2D case as example, the squared object is clustered into one green part and one blue part by two

seeds(orange coloured circle), with the fracture line along the perpendicular bisector of segment between the two seeds(left figure).

With a vector field (middle figure) and penalty l¼0, the components of distance perpendicular to the vector field will be suppressed,

then the fracture line will conform to the vector field (right figure). The dotted red lines (left and right figure) show the original distance

and its penalty distance according to the vector field.
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dropping test of a coffee plate and a plane model. Notice

that when the plate hits the ground, our fragmentation

method generates more debris in the high stress area near

the contact point. Multiple fracture is supported in our

method, after the first collision, new fragments may break

into more pieces in successive collisions. Figure 7 shows

the isotropic plaster wall broken by a rigid ball. Two

variations are showed in Figures 8 and 9 with anisotropic

control. Figure 8 uses a radial vector field around the

hitting point while Figure 9 uses a vector field along the

wood grain to guide the fracture.

Table 1 shows the geometry complexity and timing of

our method. The geometry statistics shows that detailed

triangle surfaces can be embedded in particles of much

lower resolution. Grid and table represents the cost of

building the spatial hash and neighbouring table. Dynamics

and collision measures the time of rigid dynamics and

collision handling. Stress calculation is the most time

consuming part of our method because of the computation

intensive Gaussian integration. The fragmentation cost

basically changes with the number of particles, except that

when shortest distances are computed for complex models

(e.g. plane).

General physical parameters are shown in Table 2. Our

Cþþ code runs on PC with 2.93GHz CPU, NVIDIA

GT240 graphics card and 3G RAM memory.

Comparing to previous mesh-based fracture methods

such as in Refs. [5,6,22], our method needs minimal work

on mesh processing. To prepare the input to our method,

particles are inserted through a simple coarse voxelisation,

Figure 4. A coffee cup hits the ground and breaks into pieces. Simulation is computedwith particles shown in the rightmost figure. we

embed the detailed triangle surface into the particles, then update the surface according to the rigid dynamics.

Figure 5. The plane hits the ground and the stress computation is triggered as in Figure 2.

Figure 6. The coffee plate hits the ground and breaks. Notice the small debris generated near the contact point. After the first hit, new

fragments may break into more pieces in the successive collisions.
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Figure 9. Wood is one type of anisotropic material, the particles along the wood grain tend to hold together. Our vector-guided cluster

algorithm can be used to simulate this fracture pattern.

Figure 8. A radial vector field is used to guide the fracture, this gives us more realistic results of the glass breaking effect.

Figure 7. The plaster wall is supposed to be an isotropic material. The ball hits the wall and generate more fragments near the

hitting point.

Table 1. Geometry complexity and timing of the test models.

Model # Rigid # Triangles # Particles Grid & table

(milliseconds)

Dynamics &

collision

(milliseconds)

Stress Fragmentation Render

(seconds/

frame)

Plaster wall 1!37 154.6k/161.8k 968 9 0.3 5.650 seconds 9.240milliseconds 3

Glass wall 1!37 154.6k/162.7k 968 9 0.3 5.649 seconds 8.397milliseconds 50

Wood wall 1!15 154.6k/161.8k 968 9 0.3 5.741 seconds 2.690milliseconds 4

Coffee plate 1!10 115.1k/118.5k 4857 10 2.0 47 seconds 5.0 seconds 27

Coffee cup 1!10 220.5k/228.5k 12,988 20 5.5 3minutes

4 seconds

18.0 seconds 68

Plane 1!7 52.5k/91k 2739 14 1.1 30.7 seconds 1minutes 50 seconds 7
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then resampling is handled easily when necessary.

However, to prepare and maintain a high quality FEM

mesh can be a non-trivial work.

Comparing to previous meshless fracture methods [2],

our method is more suitable to simulate brittle fracture

because no timestep constraint is required to ensure the

stiffness of the object, computation cost is minimised, and

visual artifact is avoided.

8. CONCLUSION AND FUTURE
WORK

We have presented a new solution to the brittle fracture

problem. By treating the brittle object as fully rigid

bodies, no visual artifact of small deformation will appear.

When computing the brittle stress, previous explicit

meshless methods are not suitable because tiny timesteps

are needed which lead to much more computational cost. We

introduceMLPGmethod from the computational mechanics

to solve brittle stress through a quasistatic problem, we also

propose a resampling method to improve accuracy.

To generate fractured fragments, we introduce a novel

damage-based fracture model, which clusters the particles

based on a two-state damage variable. Our method is simple

but effective to offer control over the fracture pattern.

As a meshless framework, the limitation of our method

is that more simulated nodes are needed than FEM

methods, which may consume more memory and proces-

sing time. One of the possible future work is accelerating

the integration in stress computation. Although reducing

the number of Gauss integration point will help, we seek to

parallel the integration process with graphics hardware.

Also, we look forward to applying the MLPG method to

more interesting graphics-specific problems.
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